【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關系?請說明理由;
(3)設AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
【答案】(1)=;(2)結論:AC2=AGAH.理由見解析;(3)①△AGH的面積不變.②m的值為或3或12﹣6..
【解析】
(1)證明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC=∠ACG;
(2)結論:AC2=AGAH.只要證明△AHC∽△ACG即可解決問題;
(3)①△AGH的面積不變.理由三角形的面積公式計算即可;
②分三種情形分別求解即可解決問題.
(1)∵四邊形ABCD是正方形,
∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,
∴AC=,
∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,
∴∠AHC=∠ACG.
故答案為=.
(2)結論:AC2=AGAH.
理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,
∴△AHC∽△ACG,
∴,
∴AC2=AGAH.
(3)①△AGH的面積不變.
理由:∵S△AGH=AHAG=AC2=×(4)2=16.
∴△AGH的面積為16.
②如圖1中,當GC=GH時,易證△AHG≌△BGC,
可得AG=BC=4,AH=BG=8,
∵BC∥AH,
∴,
∴AE=AB=.
如圖2中,當CH=HG時,
易證AH=BC=4,
∵BC∥AH,
∴=1,
∴AE=BE=3.
如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.5.
在BC上取一點M,使得BM=BE,
∴∠BME=∠BEM=45°,
∵∠BME=∠MCE+∠MEC,
∴∠MCE=∠MEC=22.5°,
∴CM=EM,設BM=BE=m,則CM=EMm,
∴m+m=6,
∴m=6(﹣1),
∴AE=6﹣6(﹣1)=12﹣6,
綜上所述,滿足條件的m的值為或3或12﹣6.
科目:初中數(shù)學 來源: 題型:
【題目】善于不斷改進學習方法的小迪發(fā)現(xiàn),對解題進行回顧反思,學習效果更好.某一天小迪有20分鐘時間可用于學習.假設小迪用于解題的時間(單位:分鐘)與學習收益量的關系如圖1所示,用于回顧反思的時間(單位:分鐘)與學習收益的關系如圖2所示(其中是拋物線的一部分,為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間.
(1)求小迪解題的學習收益量與用于解題的時間之間的函數(shù)關系式;
(2)求小迪回顧反思的學習收益量與用于回顧反思的時間的函數(shù)關系式;
(3)問小迪如何分配解題和回顧反思的時間,才能使這20分鐘的學習收益總量最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ACB中,∠C=90°,AC=3 cm,BC=4 cm,以BC為直徑作☉O交AB于點D.
(1)求線段AD的長度;
(2)點E是線段AC上的一點,試問當點E在什么位置時,直線ED與☉O相切?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,二次函數(shù)y1=(x﹣2)(x﹣4)的圖象與x軸交于A、B兩點(點A在點B的左側),其對稱軸l與x軸交于點C,它的頂點為點D.
(1)寫出點D的坐標 .
(2)點P在對稱軸l上,位于點C上方,且CP=2CD,以P為頂點的二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點A.
①試說明二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點B;
②點R在二次函數(shù)y1=(x﹣2)(x﹣4)的圖象上,到x軸的距離為d,當點R的坐標為 時,二次函數(shù)y2=ax2+bx+c(a≠0)的圖象上有且只有三個點到x軸的距離等于2d;
③如圖2,已知0<m<2,過點M(0,m)作x軸的平行線,分別交二次函數(shù)y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的圖象于點E、F、G、H(點E、G在對稱軸l左側),過點H作x軸的垂線,垂足為點N,交二次函數(shù)y1=(x﹣2)(x﹣4)的圖象于點Q,若△GHN∽△EHQ,求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,已知P(1,1),C為y軸正半軸上一點,D為第一象限內(nèi)一點,且PC=PD,∠CPD=90°,過點D作直線AB⊥x軸于B,直線AB與直線y=x交于點A,且BD=3AD,連接CD,直線CD與直線y=x交于點Q,則點Q的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,△ABC的頂
點都在格點上,建立平面直角坐標系.
(1)點A的坐標為 ,點C的坐標為 .
(2)將△ABC向左平移7個單位,請畫出平移后的△A1B1C1.若M為△ABC內(nèi)的一點,其坐標為(a,b),則平移后點M的對應點M1的坐標為 .
(3)以原點O為位似中心,將△ABC縮小,使變換后得到的△A2B2C2與△ABC對應邊的比為1∶2.請在網(wǎng)格內(nèi)畫出△A2B2C2,并寫出點A2的坐標: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我校本部教師樓AD上有“育才中學”四個字的展示牌DE,某數(shù)學興趣小組的同學準備利用所學的三角函數(shù)知識估測該教師樓的高度,由于場地有限,不便測量,所以小明沿坡度i=:1的階梯從看臺前的B處前行50米到達C處,測得展示牌底部D的仰角為45°,展示牌頂部E的仰角為53°(小明的身高忽略不計),已知展示牌高DE=15米,則該教師樓AD的高度約為( 。┟祝▍⒖紨(shù)據(jù):Sin37°≈0,6,cos 37°≈0,8,tan37°≈0.75,≈1.7)
A. 102.5B. 87.5C. 85D. 70
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正五邊形ABCDE中,DC和AB的延長線交于F,則圖中與△DBF相似的三角形有(不再添加其他的線段和字母,不包括△DBF本身) ( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經(jīng)過點A(1,0),
B(3,2).
(1)求m的值和拋物線的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com