【題目】如圖,正五邊形ABCDE中,DC和AB的延長(zhǎng)線交于F,則圖中與△DBF相似的三角形有(不再添加其他的線段和字母,不包括△DBF本身) ( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】B
【解析】
由于五邊形ABCDE是正五邊形,那么有∠E=∠BCD=108°,AB=BC=CD=DE=AE,AD=BD,易求∠DAB=∠DBA=72°,進(jìn)而可求∠DBF、∠F,從而可得∠E=∠BCD=∠DBF,∠EAD=∠EDA=∠BDC=∠CBD=∠F,從而可證△DEA∽△DCB∽△DBF.
解:∵五邊形ABCDE是正五邊形,
∴∠E=∠BCD=108°,AB=BC=CD=DE=AE,AD=BD,
∴∠EAD=∠EDA=∠BDC=∠CBD==36°,
∴∠DAB=∠DBA=72°,
∴∠DBF=180°-72°=108°,∠F=36°,
∴∠E=∠BCD=∠DBF,∠EAD=∠EDA=∠BDC=∠CBD=∠F,
∴△DEA∽△DCB∽△DBF.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郴州市正在創(chuàng)建“全國(guó)文明城市”,某校擬舉辦“創(chuàng)文知識(shí)”搶答賽,欲購(gòu)買A、B兩種獎(jiǎng)品以鼓勵(lì)搶答者.如果購(gòu)買A種20件,B種15件,共需380元;如果購(gòu)買A種15件,B種10件,共需280元.
(1)A、B兩種獎(jiǎng)品每件各多少元?
(2)現(xiàn)要購(gòu)買A、B兩種獎(jiǎng)品共100件,總費(fèi)用不超過900元,那么A種獎(jiǎng)品最多購(gòu)買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.
②請(qǐng)直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角△ABC中,AB=BC,∠ABC=90°,BD⊥AC于D,點(diǎn)M在AD上,連接BM,過點(diǎn)C作CN⊥BM于點(diǎn)E,交AB于N,交BD于F,連接DE,AE.
(1)若∠BCN=30°,EN=2,求AN的長(zhǎng);
(2)若DE⊥AE于E,DG⊥DE交CN于G,求證:CE=AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時(shí)間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:
(1)t= min.
(2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,
①則甲登山的的上升速度是 m/min;
②請(qǐng)求出甲登山過程中,距地面的高度y(m)與登山時(shí)間x(min)之間的函數(shù)關(guān)系式.
③當(dāng)甲、乙兩人距地面高度差為70m時(shí),求x的值(直接寫出滿足條件的x值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:Rt△ABC中,∠C=90°,AC=BC=2,將一塊三角尺的直角頂點(diǎn)與斜邊AB的中點(diǎn)M重合,當(dāng)三角尺繞著點(diǎn)M旋轉(zhuǎn)時(shí),兩直角邊始終保持分別與邊BC、AC交于D,E兩點(diǎn)(D、E不與B、A重合).
(1)求證:MD=ME;
(2)求四邊形MDCE的面積:
(3)若只將原題目中的“AC=BC=2”改為“BC=a,AC=b,(a≠b)”其它都不變,請(qǐng)你探究:MD和ME還相等嗎?如果相等,請(qǐng)證明;如果不相等,請(qǐng)求出MD∶ME的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x函數(shù)y=(2﹣k)x2﹣2x+k
(1)若此函數(shù)的圖象與坐標(biāo)軸只有2個(gè)交點(diǎn),求k的值.
(2)求證:關(guān)于x的一元二次方程(2﹣k)x2﹣2x+k=0必有一個(gè)根是1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P,給出如下定義:記點(diǎn)P到x軸的距離為,到y軸的距離為,若,則稱為點(diǎn)P的最大距離;若,則稱為點(diǎn)P的最大距離.
例如:點(diǎn)P(,)到到x軸的距離為4,到y軸的距離為3,因?yàn)? < 4,所以點(diǎn)P的最大距離為.
(1)①點(diǎn)A(2,)的最大距離為 ;
②若點(diǎn)B(,)的最大距離為,則的值為 ;
(2)若點(diǎn)C在直線上,且點(diǎn)C的最大距離為,求點(diǎn)C的坐標(biāo);
(3)若⊙O上存在點(diǎn)M,使點(diǎn)M的最大距離為,直接寫出⊙O的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)F在DE的延長(zhǎng)線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結(jié)論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com