【題目】如圖,正五邊形ABCDE中,DCAB的延長(zhǎng)線交于F,則圖中與△DBF相似的三角形有(不再添加其他的線段和字母,不包括△DBF本身) ( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

【答案】B

【解析】

由于五邊形ABCDE是正五邊形,那么有∠E=BCD=108°,AB=BC=CD=DE=AE,AD=BD,易求∠DAB=DBA=72°,進(jìn)而可求∠DBF、∠F,從而可得∠E=BCD=DBF,∠EAD=EDA=BDC=CBD=F,從而可證DEA∽△DCB∽△DBF

解:∵五邊形ABCDE是正五邊形,
∴∠E=BCD=108°,AB=BC=CD=DE=AEAD=BD
∴∠EAD=EDA=BDC=CBD==36°,
∴∠DAB=DBA=72°
∴∠DBF=180°-72°=108°,∠F=36°,
∴∠E=BCD=DBF,∠EAD=EDA=BDC=CBD=F,
∴△DEA∽△DCB∽△DBF
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郴州市正在創(chuàng)建全國(guó)文明城市,某校擬舉辦創(chuàng)文知識(shí)搶答賽,欲購(gòu)買A、B兩種獎(jiǎng)品以鼓勵(lì)搶答者.如果購(gòu)買A20件,B15件,共需380元;如果購(gòu)買A15件,B10件,共需280元.

(1)A、B兩種獎(jiǎng)品每件各多少元?

(2)現(xiàn)要購(gòu)買A、B兩種獎(jiǎng)品共100件,總費(fèi)用不超過900元,那么A種獎(jiǎng)品最多購(gòu)買多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段ACAG,AH什么關(guān)系?請(qǐng)說明理由;

(3)設(shè)AEm

①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出Sm的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.

②請(qǐng)直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角△ABC中,ABBC,∠ABC90°,BDACD,點(diǎn)MAD上,連接BM,過點(diǎn)CCNBM于點(diǎn)E,交ABN,交BDF,連接DE,AE

1)若∠BCN30°,EN2,求AN的長(zhǎng);

2)若DEAEE,DGDECNG,求證:CEAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時(shí)間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:

1t= min.

2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,

則甲登山的的上升速度是 m/min;

請(qǐng)求出甲登山過程中,距地面的高度y(m)與登山時(shí)間x(min)之間的函數(shù)關(guān)系式.

當(dāng)甲、乙兩人距地面高度差為70m時(shí),求x的值(直接寫出滿足條件的x值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:RtABC中,∠C=90°,AC=BC=2,將一塊三角尺的直角頂點(diǎn)與斜邊AB的中點(diǎn)M重合,當(dāng)三角尺繞著點(diǎn)M旋轉(zhuǎn)時(shí),兩直角邊始終保持分別與邊BC、AC交于DE兩點(diǎn)(D、E不與B、A重合)

(1)求證:MD=ME;

(2)求四邊形MDCE的面積:

(3)若只將原題目中的“AC=BC=2”改為“BC=a,AC=b(ab)”其它都不變,請(qǐng)你探究:MDME還相等嗎?如果相等,請(qǐng)證明;如果不相等,請(qǐng)求出MDME的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x函數(shù)y(2k)x22x+k

(1)若此函數(shù)的圖象與坐標(biāo)軸只有2個(gè)交點(diǎn),求k的值.

(2)求證:關(guān)于x的一元二次方程(2k)x22x+k0必有一個(gè)根是1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P,給出如下定義:記點(diǎn)Px軸的距離為,到y軸的距離為,若,則稱為點(diǎn)P的最大距離;若,則稱為點(diǎn)P的最大距離.

例如:點(diǎn)P)到到x軸的距離為4,到y軸的距離為3,因?yàn)? < 4,所以點(diǎn)P的最大距離為.

(1)①點(diǎn)A(2,)的最大距離為 ;

②若點(diǎn)B)的最大距離為,則的值為 ;

(2)若點(diǎn)C在直線上,且點(diǎn)C的最大距離為,求點(diǎn)C的坐標(biāo);

(3)若⊙O存在點(diǎn)M,使點(diǎn)M的最大距離為,直接寫出⊙O的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)FDE的延長(zhǎng)線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結(jié)論:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案