【題目】如圖是某校體育場(chǎng)內(nèi)一看臺(tái)的截面圖,看臺(tái)CD與水平線的夾角為30°,最低處C與地面的距離BC2.5米,在CD正前方有垂直于地面的旗桿EF,在CD兩處測(cè)得旗桿頂端F的仰角分別為60°30°,CD長(zhǎng)為10米,升旗儀式中,當(dāng)國(guó)歌開始播放時(shí),國(guó)旗也在離地面1.5米的P處同時(shí)冉冉升起,國(guó)歌播放結(jié)束時(shí),國(guó)旗剛好上升到旗桿頂端F,已知國(guó)歌播放時(shí)間為46秒,求國(guó)旗上升的平均速度.(結(jié)果精確到0.01/秒)

【答案】國(guó)旗上升的平均速度約為0.35/秒.

【解析】

先證明△DCF是直角三角形,然后根據(jù)正切的概念求出FC的長(zhǎng),再根據(jù)正弦的概念求出FG的長(zhǎng),結(jié)合圖形計(jì)算即可.

解:由題意得,∠FCD90°,∠FDC60°,

FCCDtanFDC10,

RtCGF中,FGFCsinFCG10×15,

PFFG+GEPE15+2.51.516,

16÷460.35

答:國(guó)旗上升的平均速度約為0.35/秒.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,點(diǎn)EAD的中點(diǎn),連接BE、AC,ACBE于點(diǎn)F,連接DF,對(duì)于結(jié)論①CF=2AF②△AEF∽△CABDF=DCtanCAD=正確的有_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號(hào),經(jīng)確定,遇險(xiǎn)拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時(shí),問(wèn)漁船在B處需要等待多長(zhǎng)時(shí)間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結(jié)果精確到0.1小時(shí))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用480元購(gòu)買乙種樹苗的棵數(shù)恰好與用360元購(gòu)買甲種樹苗的棵數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?

(2)在實(shí)際幫扶中,他們決定再次購(gòu)買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購(gòu)買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購(gòu)買兩種樹苗的總費(fèi)用不超過(guò)1500元,那么他們最多可購(gòu)買多少棵乙種樹苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)a、b都是常數(shù),且a<0)的圖像與x軸交于點(diǎn)、,頂點(diǎn)為點(diǎn)C.

1)求這個(gè)二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);

2)過(guò)點(diǎn)B的直線交拋物線的對(duì)稱軸于點(diǎn)D,聯(lián)結(jié)BC,求∠CBD的余切值;

3)點(diǎn)P為拋物線上一個(gè)動(dòng)點(diǎn),當(dāng)∠PBA=CBD時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做等鄰邊四邊形

1)概念理解

如圖1,在四邊形ABCD中,添加一個(gè)條件使得四邊形ABCD等鄰邊四邊形.請(qǐng)寫出你添加的一個(gè)條件.

2)問(wèn)題探究

小紅猜想:對(duì)角線互相平分的等鄰邊四邊形是菱形.她的猜想正確嗎?請(qǐng)說(shuō)明理由.

如圖2,小紅畫了一個(gè)Rt△ABC,其中∠ABC=90°,AB=2BC=1,并將Rt△ABC沿∠ABC的平分線BB'方向平移得到△ABC',連結(jié)AA',BC'.小紅要是平移后的四邊形ABCA'是等鄰邊四邊形,應(yīng)平移多少距離(即線段BB'的長(zhǎng))?

3)應(yīng)用拓展

如圖3,等鄰邊四邊形”ABCD中,AB=AD∠BAD+∠BCD==90°,AC,BD為對(duì)角線,AC=AB.試探究BC,CD,BD的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AC為對(duì)角線,點(diǎn)E,F分別在AB,AD上,BE=DF,連接EF

1)求證:AC⊥EF

2)延長(zhǎng)EFCD的延長(zhǎng)線于點(diǎn)G,連接BDAC于點(diǎn)O,若BD=4,tanG=,求AO的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在□ABCD中,已知ABBC

(1)實(shí)踐與操作:作ADC的平分線交AB于點(diǎn)E,在DC上截取DF=AD,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)猜想并證明:猜想四邊形AEFD的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班“手拉手”數(shù)學(xué)學(xué)習(xí)互助小組對(duì)矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究時(shí),遇到以下問(wèn)題,請(qǐng)你逐一加以解答:

1)如圖1,正方形ABCD中,EFGH,EF分別交ABCD于點(diǎn)E,F,GH分別交AD,BC于點(diǎn)GH,則EF   GH;(填“>”“=”或“<”)

2)如圖2,矩形ABCD中,EFGHEF分別交AB,CD于點(diǎn)E,F,GH分別交AD,BC于點(diǎn)GH,求證: =;

3)如圖3,四邊形ABCD中,∠ABC=∠ADC=90°,BC=3CD=5,AD=75,AMDN,點(diǎn)M,N分別在邊BCAB上,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案