【題目】某班“手拉手”數(shù)學學習互助小組對矩形內兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關系進行探究時,遇到以下問題,請你逐一加以解答:
(1)如圖1,正方形ABCD中,EF⊥GH,EF分別交AB,CD于點E,F,GH分別交AD,BC于點G,H,則EF GH;(填“>”“=”或“<”)
(2)如圖2,矩形ABCD中,EF⊥GH,EF分別交AB,CD于點E,F,GH分別交AD,BC于點G,H,求證: =;
(3)如圖3,四邊形ABCD中,∠ABC=∠ADC=90°,BC=3,CD=5,AD=7.5,AM⊥DN,點M,N分別在邊BC,AB上,求的值.
【答案】(1)=;(2)見解析;(3)
【解析】
(1)首先過點A作AP∥GH,交BC于P,過點B作BQ∥EF,交CD于Q,交BQ于T,然后根據正方形的性質以及△ABP≌△BCQ的判定與性質,即可得出EF=GH;
(2)首先過點A作AP∥EF,交CD于P,過點B作BQ∥GH,交AD于Q,然后根據矩形的性質以及△PDA∽△QAB的判定與性質,即可得出;
(3)首先過點D作平行于AB的直線,交過點A平行于BC的直線于R,交BC的延長線于S,判定平行四邊形ABSR是矩形,由(1)結論得出,然后判定△ARD∽△DSC,運用其性質和勾股定理構建方程,求解即可.
(1)如圖1中,過點A作AP∥GH,交BC于P,過點B作BQ∥EF,交CD于Q,交BQ于T,
∵四邊形ABCD是正方形,
∴AB∥DC,AD∥BC,AB=BC,∠ABP=∠C=90°
∴四邊形BEFQ、四邊形PHGA都是平行四邊形,
∴AP=GH,EF=BQ.
又∵GH⊥EF,
∴AP⊥BQ,
∴∠PBT+∠ABT=90°,∠ABT+∠BAT=90°,
∴∠CBQ=∠BAT,
在△ABP和△BCQ中,
,
∴△ABP≌△BCQ,
∴AP=BQ,
∴EF=GH,
故答案為:=;
(2)過點A作AP∥EF,交CD于P,過點B作BQ∥GH,交AD于Q,如圖2,
∵四邊形ABCD是矩形,
∴AB∥DC,AD∥BC.
∴四邊形AEFP、四邊形BHGQ都是平行四邊形,
∴AP=EF,GH=BQ.
又∵GH⊥EF,
∴AP⊥BQ,
∴∠QAT+∠AQT=90°,
∵四邊形ABCD是矩形,
∴∠DAB=∠D=90°,
∴∠DAP+∠DPA=90°,
∴∠AQT=∠DPA,
∴△PDA∽△QAB,
∴,
∴;
(3)過點D作平行于AB的直線,交過點A平行于BC的直線于R,交BC的延長線于S,如圖3,
則四邊形ABSR是平行四邊形.
∵∠ABC=90°,
∴平行四邊形ABSR是矩形,
∴∠R=∠S=90°,RS=AB=10,AR=BS.
∵AM⊥DN,
∴由(1)中的結論可得,
設SC=x,則AR=BS=3+x,
∵∠ADC=∠R=∠S=90°,
∴∠ADR+∠RAD=90°,∠ADR+∠SDC=90°,
∴∠RAD=∠CDS,
∴△ARD∽△DSC,
∴==,
∴DR=x,DS=(x+3),
在Rt△ARD中,∵AD2=AR2+DR2,
∴7.52=(x+3)2+(x)2,
整理得13x2+24x﹣189=0,解得x=3或﹣,
∴AR=6,AB=RS=,
∴=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某校體育場內一看臺的截面圖,看臺CD與水平線的夾角為30°,最低處C與地面的距離BC為2.5米,在C,D正前方有垂直于地面的旗桿EF,在C,D兩處測得旗桿頂端F的仰角分別為60°和30°,CD長為10米,升旗儀式中,當國歌開始播放時,國旗也在離地面1.5米的P處同時冉冉升起,國歌播放結束時,國旗剛好上升到旗桿頂端F,已知國歌播放時間為46秒,求國旗上升的平均速度.(結果精確到0.01米/秒)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2﹣2x+3與x軸從左到右交于A、B兩點,與y軸交于點C,頂點為D
(1)求直線AC的解析式與點D的坐標;
(2)在直線AC上方的拋物線上有一點E,作EF∥x軸,與拋物線交于點F,作EM⊥x軸于M,作FN⊥x軸于N,長度為2的線段PQ在直線AC上運動(點P在點Q右側),當四邊形EMNF的周長取最大值求四邊形DPQE的周長的最小值及對應的點Q的坐標;
(3)如圖2,平移拋物線,使拋物線的頂點D在直線AD上移動,點D平移后的對應點為D′,點A平移后的對應點為A′,△A′D′C是否能為直角三角形?若能,請求出對應的線段D′C的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校校本課程中心為了解該校學生喜歡校本課程的情況,采取抽樣調查的辦法,通過書法、陶藝、燈謎、足球四門課程的選報情況調查若干名學生的興趣愛好,要求每位同學只能選擇一門自己喜歡的課程,并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖,請你根據圖中提供的信息,解答下列問題:
(1)在這次調查研究中,一共調查了 名學生,喜歡燈謎的人數(shù)在扇形統(tǒng)計圖中所占的圓心角是 度:
(2)請補全頻數(shù)分布折線統(tǒng)計圖;
(3)為了平衡各校本課程的人數(shù),需要從喜歡陶藝課程的甲、乙、丙3人中調整2人到燈謎課程,試用列表或樹狀圖的方法求“甲、乙兩人被同時調整到燈謎課程”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A1,A2,A3,…,An在y軸的正半軸上,點B1,B2,B3,…,Bn在二次函數(shù)y=x2位于第一象限的圖象上,若△OB1A1,△A1B2A2,△A2B3A3,…,△An-1BnAn都是等腰直角三角形,其中∠B1=∠B2=∠B3=…=∠Bn=90°,則:點B1的坐標為______;線段A1A2的長為______;△An-1BnAn的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:如圖,Rt△AB中,,AC=BC,AB= 4cm.動點D沿著A→C→B的方向從A點運動到B點.DEAB,垂足為E.設AE長為cm,BD長為cm(當D與A重 合時,= 4;當D與B重合時=0).小云根據學習函數(shù)的經驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.下面是小云的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了與的幾組值,如下表:
/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
/cm | 4 | 3.5 | 3.2 |
| 2.8 | 2.1 | 1.4 | 0.7 | 0 |
補全上面表格,要求結果保留一位小數(shù).則__________;
(2)在下面的網格中建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)結合畫出的函數(shù)圖象,解決問題:當DB=AE時,AE的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,CAB=60°,點O為斜邊AB上一點,且OA=2,以OA為半徑的⊙O與BC相切于D,與AC交于點E,連接AD.
(1)求線段CD的長;
(2)求⊙O與Rt△ABC重疊部分的面積.(結果保留準確值)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為( )
A. B. 2 C. D. 2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com