【題目】如圖,在正方形ABCD中,點(diǎn)P為AD延長線上一點(diǎn),連接AC、CP,F(xiàn)為AB邊上一點(diǎn),滿足CF⊥CP,過點(diǎn)B作BM⊥CF,分別交AC、CF于點(diǎn)M、N
(1)若AC=AP,AC=4,求△ACP的面積;
(2)若BC=MC,證明:CP﹣BM=2FN.
【答案】(1);(2)見解析
【解析】
(1)由正方形的性質(zhì)得出AD=CD=5,∠ADC =90°,根據(jù)勾股定理以及AC的長可求得AD=CD=4,再根據(jù)AC=AP求出AP長,即可求出S△ACP;
(2)在CF上截取FN=NG,連接BG,由已知可證得△BCF≌△DCP,可得CF=CP,繼而可證得△BCG≌△ABM,可得BM=CG,結(jié)合圖形即可推導(dǎo)得出CP﹣BM=2FN.
(1)∵四邊形ABC是正方形,
∴AD= CD,∠ADC =90°,
∴AC=,
∵AC=4,
∴AD=CD=4,
∵AC=AP,
∴AP=,
∴S△ACP=AP×CD
=××4
=7;
(2)在CF上截取FN=NG,連接BG,
∵四邊形ABCD是正方形,
∴AB=CB=CD,
∠CBF=∠CDP=∠BCF+∠FCD=90°,
又∵CF⊥CP,
∴∠DCP+∠FCD=90°,
∴∠BCF=∠BCD,
在△BCF和△DCP中,
,
∴△BCF≌△DCP,
∴CF=CP,
∵BC=MC,BM⊥CF,
∴∠BCF=∠ACF=∠BCA=22.5°,
∴∠CFB=67.5°,
∵FC⊥BM,F(xiàn)N=NG,
∴BF=BG,
∴∠FBG=45°,∠FBN=22.5°,
∴∠CBG=45°,
在△BCG和△BAN中,
,
∴△BCG≌△ABM,
∴BM=CG,
∴CF﹣CG=FG,
∵BF=BG,BM⊥CF,
∴FN=NG,
∴CP﹣BM=2FN.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在6×8的網(wǎng)格紙中,每個(gè)小正方形的邊長都為1,動(dòng)點(diǎn)P、Q分別從點(diǎn)D、A同時(shí)出發(fā)向右移動(dòng),點(diǎn)P的運(yùn)動(dòng)速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動(dòng)速度為每秒1個(gè)單位,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩個(gè)點(diǎn)都停止運(yùn)動(dòng).運(yùn)動(dòng)時(shí)間t 為_______秒時(shí),△PQB成為以PQ為腰的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,.點(diǎn)從點(diǎn)出發(fā),沿折線—以每秒1個(gè)單位長度的速度向終點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)沿折線-以每秒3個(gè)單位長度的速度向終點(diǎn)運(yùn)動(dòng),、兩點(diǎn)同時(shí)出發(fā).分別過、兩點(diǎn)作于,于.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為(秒).
(1)當(dāng)、兩點(diǎn)相遇時(shí),求的值.
(2)在整個(gè)運(yùn)動(dòng)過程中,求的長(用含的代數(shù)式表示).
(3)當(dāng)與全等時(shí),直接寫出所有滿足條件的的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點(diǎn)P從A點(diǎn)出發(fā)沿A→C→B路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)Q從B點(diǎn)出發(fā)沿B→C→A路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn).點(diǎn)P和Q分別以每秒1cm和3cm的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止運(yùn)動(dòng),在某時(shí)刻,分別過P和Q作PE⊥l于E,QF⊥l于F.設(shè)運(yùn)動(dòng)時(shí)間為t秒,則當(dāng)t=______秒時(shí),△PEC與△QFC全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A地在C、B兩地之間,甲乙兩人分別從A、B兩地同時(shí)出發(fā),相向而行,經(jīng)過一段時(shí)間后相遇,甲繼續(xù)向B地前進(jìn),乙繼續(xù)向A地前進(jìn);甲到達(dá)B地后立即返回,在C地甲追上乙.甲乙兩人相距的路程y(米)與出發(fā)的時(shí)間x(分鐘)之間的關(guān)系如圖所示,則A、C兩地相距___米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四幅圖象分別表示變量之間的關(guān)系,請按圖象的順序,將下面的四種情境與之對應(yīng)排序.正確的順序是( 。
①籃球運(yùn)動(dòng)員投籃時(shí),投出去的籃球的高度與時(shí)間的關(guān)系
②去超市購買同一單價(jià)的水果,所付費(fèi)用與水果數(shù)量的關(guān)系
③李老師使用的是一種含月租的手機(jī)計(jì)費(fèi)方式,則他每月所付話費(fèi)與通話時(shí)間的關(guān)系
④周末,小明從家到圖書館,看了一段時(shí)間書后,按原速度原路返回,小明離家的距離與時(shí)間的關(guān)系
A. ①②③④ B. ①③④② C. ①③②④ D. ①④②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對x,y定義一種新運(yùn)算F,規(guī)定:F(x,y)=(mx+ny)(3x﹣y)(其中m,n均為非零常數(shù)).例如:F(1,1)=2m+2n,F(xiàn)(﹣1,0)=3m.
(1)已知F(1,﹣1)=﹣8,F(xiàn)(1,2)=13.
①求m,n的值;
②關(guān)于a的不等式組,求a的取值范圍;
(2)當(dāng)x2≠y2時(shí),F(x,y)=F(y,x)對任意有理數(shù)x,y都成立,請直接寫出m,n滿足的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鹽城市初級中學(xué)為了緩解校門口的交通堵塞,倡導(dǎo)學(xué)生步行上學(xué). 小麗步行從家去學(xué)校,圖中的線段表示小麗步行的路程s(米)與所用時(shí)間t(分鐘)之間的函數(shù)關(guān)系. 試根據(jù)函數(shù)圖像回答下列問題:
(1)小麗家離學(xué)校 米;
(2)小麗步行的速度是 米/分鐘;
(3)求出m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com