【題目】如圖,點(diǎn)在雙曲線的第一圖像的那一支上,垂直于軸于點(diǎn),點(diǎn)軸正半軸上,且,點(diǎn)在線段上,且,點(diǎn)的中點(diǎn),若面積為3,則的值為(

A.B.C.D.

【答案】B

【解析】

AE=3EC,ADE的面積為3,得到CDE的面積為1,則ADC的面積為4,設(shè)A點(diǎn)坐標(biāo)為(a,b),則k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBAC=SABD+SADC+SODC(a+2a)×b=b+4+×2a×b,,整理可得ab=,即可得到k的值.

解:連DC,如圖,


AE=3EC,ADE的面積為3,
CDE的面積為1
ADC的面積為4,
設(shè)A點(diǎn)坐標(biāo)為(a,b),則AB=a,OC=2AB=2a,
而點(diǎn)DOB的中點(diǎn),
BD=OD= b,
S梯形OBAC=SABD+SADC+SODC,
(a+2a)×b= b+4+ ×2a×b,
ab= ,
A(a,b)A(a,b)代入雙曲線,
k=ab=
故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有客房間供游客居住,當(dāng)每間客房的定價(jià)為每天元時(shí),客房恰好全部住滿;如果每間客房每天的定價(jià)每增加元,就會(huì)減少間客房出租.設(shè)每間客房每天的定價(jià)增加元,賓館出租的客房為間.求:

關(guān)于的函數(shù)關(guān)系式;

如果某天賓館客房收入元,那么這天每間客房的價(jià)格是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC8,把△ABC沿著AC向上翻折得到△AECECAD邊于點(diǎn)F,則點(diǎn)FAC的距離是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)的平均數(shù),即,則方差,它反映了這組數(shù)的波動(dòng)性,

1)證明:對(duì)任意實(shí)數(shù)a,x1a,x2a,,xna,與x1,x2,,xn 方差相同;

2)證明;

3)以下是我校初三(1)班 10 位同學(xué)的身高(單位:厘米):

169172,163173,175,168,170,167,170,171,計(jì)算這組數(shù)的方差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+mx+m2的頂點(diǎn)為A,且經(jīng)過點(diǎn)(3,﹣3.

1)求拋物線的解析式及頂點(diǎn)A的坐標(biāo);

2)將原拋物線沿射線OA方向進(jìn)行平移得到新的拋物線,新拋物線與射線OA交于CD兩點(diǎn),如圖,請(qǐng)問:在拋物線平移的過程中,線段CD的長度是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的外接圓,,作直線,

1)圖1,求證:的切線;

2)圖2,于點(diǎn),過點(diǎn),垂足為,交于點(diǎn)

①求證:

②若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,四邊形ABCD為⊙O的內(nèi)接四邊形,點(diǎn)PBA的延長線上,PD與⊙O相切,D為切點(diǎn),若∠BCD125°,則∠ADP的大小為(

A.25°B.40°C.35°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)省材料,某農(nóng)場主利用圍墻(圍墻足夠長)為一邊,用總長為80m的籬笆圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,則能圍成的矩形區(qū)域ABCD的面積最大值是___m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系的原點(diǎn)O是正方形ABCD的中心,頂點(diǎn)A,B的坐標(biāo)分別為(1,1)、(﹣1,1),把正方形ABCD繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°得到正方形ABCD,則正方形ABCD與正方形ABCD重疊部分形成的正八邊形的邊長為(  )

A.2B.22C.42D.+1

查看答案和解析>>

同步練習(xí)冊(cè)答案