【題目】如圖,在矩形ABCD中,AB=4,BC=8,把△ABC沿著AC向上翻折得到△AEC,EC交AD邊于點(diǎn)F,則點(diǎn)F到AC的距離是_____.
【答案】
【解析】
由矩形的性質(zhì)可得AD=BC=8,AD∥BC,AB=CD=4,∠B=∠D=90°,由折疊的性質(zhì)可得∠ACB=∠FCA,可證AF=CF,由勾股定理可求AF的長,由三角形的面積公式可求點(diǎn)F到AC的距離.
∵四邊形ABCD是矩形,
∴AD=BC=8,AD∥BC,AB=CD=4,∠B=∠D=90°,
∴∠FAC=∠ACB,
∵把△ABC沿著AC向上翻折得到△AEC,
∴∠ACB=∠FCA,
∴∠FCA=∠FAC,
∴AF=CF,
∵AB=4,BC=8,
∴AC=,
在Rt△FDC中,CF2=CD2+DF2,
∴AF2=16+(8﹣AF)2,
∴AF=5
∵S△AFC=×AC×點(diǎn)F到AC的距離=×AF×CD=10
∴點(diǎn)F到AC的距離=,
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形中,當(dāng)?shù)?/span>1次作,第2次作;第3次作,……依次方法繼續(xù)作垂直線段,當(dāng)作到第10次時(shí),所得的最小的三角形的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加快“智慧校園”建設(shè),某市準(zhǔn)備為試點(diǎn)學(xué)校采購一批、兩種型號(hào)的一體機(jī),經(jīng)過市場調(diào)查發(fā)現(xiàn),今年每套型一體機(jī)的價(jià)格比每套型一體機(jī)的價(jià)格多0.6萬元,且用960萬元恰好能購買500套型一體機(jī)和200套型一體機(jī).
(1)求今年每套型、型一體機(jī)的價(jià)格各是多少萬元
(2)該市明年計(jì)劃采購型、型一體機(jī)1100套,考慮物價(jià)因素,預(yù)計(jì)明年每套型一體機(jī)的價(jià)格比今年上漲25%,每套型一體機(jī)的價(jià)格不變,若購買型一體機(jī)的總費(fèi)用不低于購買型一體機(jī)的總費(fèi)用,那么該市明年至少需要投入多少萬元才能完成采購計(jì)劃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①拋物線y=ax2+bx+3(a≠0)與x軸,y軸分別交于點(diǎn)A(﹣1,0),B(3,0),點(diǎn)C三點(diǎn).
(1)試求拋物線的解析式;
(2)點(diǎn)D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對(duì)稱軸左側(cè)的拋物線上是否存在一點(diǎn)P,滿足∠PBC=∠DBC?如果存在,請求出點(diǎn)P點(diǎn)的坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)N在拋物線的對(duì)稱軸上,點(diǎn)M在拋物線上,當(dāng)以M、N、B、C為頂點(diǎn)的四邊形是平行四邊形時(shí),請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.
(1)求m的值;
(2)先作的圖象關(guān)于x軸的對(duì)稱圖形,然后將所作圖形向左平移3個(gè)單位長度,再向上平移2個(gè)單位長度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線AC.BD交于點(diǎn)O,AC平分∠BAD,過點(diǎn)C作CE⊥AB交AB的延長線于點(diǎn)E.連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=.OE=2,求線段CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市茶葉專賣店銷售某品牌茶葉,其進(jìn)價(jià)為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價(jià)每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:
(1)每千克茶葉應(yīng)降價(jià)多少元?
(2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價(jià)的 幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在雙曲線的第一圖像的那一支上,垂直于軸于點(diǎn),點(diǎn)在軸正半軸上,且,點(diǎn)在線段上,且,點(diǎn)為的中點(diǎn),若面積為3,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊用周長為30米的籬笆圍成.已知墻長為米,設(shè)苗圃園垂直于墻的一邊長為米,苗圃園的面積為平方米.
(1)直接寫出與的函數(shù)關(guān)系式;
(2)若,求的取值范圍;
(3)當(dāng)時(shí),求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com