【題目】如圖,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度數.
【答案】解:∵∠A=40°,∠B=72°,
∴∠ACB=180°﹣(∠A+∠B),
=180°﹣(30°+62°),
=180°﹣92°,
=88°,
∵CE平分∠ACB,
∴∠ECB=∠ACB=44°,
∵CD⊥AB于D,
∴∠CDB=90°,
∴∠BCD=90°﹣∠B=90°﹣62°=28°,
∴∠ECD=∠ECB﹣∠BCD=44°﹣28°=16°,
∵DF⊥CE于F,
∴∠CFD=90°,
∴∠CDF=90°﹣∠ECD=90°﹣16°=74°.
【解析】首先根據三角形的內角和定理求得∠ACB的度數,以及∠BCD的度數,根據角的平分線的定義求得∠BCE的度數,則∠ECD可以求解,然后在△CDF中,利用內角和定理即可求得∠CDF的度數.
【考點精析】本題主要考查了三角形三邊關系的相關知識點,需要掌握三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,反比例函數的圖象與一次函數y2=kx+b的圖象交于點A(-4,-1)和點B(1,n).
(1)求這兩個函數的表達式;
(2)觀察圖象,當y1>y2時,直接寫出自變量x的取值范圍;
(3)如果點C與點A關于y軸對稱,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某區(qū)九年級學生身體素質情況,該區(qū)從全區(qū)九年級學生中隨機抽取了部分學生進行了一次體育考試科目測試(把測試結果分為四個等級:A級:優(yōu)秀:B級:良好;C級:及格;D級:不及格),并將測試結果繪成了如圖兩幅不完整的統(tǒng)計圖.請根據統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學生人數是 ;
(2)求圖1中∠α的度數是 °,把圖2條形統(tǒng)計圖補充完整;
(3)該區(qū)九年級有學生3500名,如果全部參加這次體育科目測試,請估計不及格的人數為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某小區(qū)2016年屋頂綠化面積為2000平方米,計劃2018年屋頂綠化面積要達到2880平方米,如果每年屋頂綠化面積的增長率相同,那么這個增長率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖四邊形ABCD內接于⊙O ,BD是⊙O 的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O 的切線;
(2)若∠DBC=30°,DE=1cm,求BD的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com