【題目】在兩千多年前我國古算術(shù)上記載有“勾三股四弦五”.你知道它的意思嗎?
它的意思是說:如果一個直角三角形的兩條直角邊長分別為3和4個長度單位,那么它的斜邊的長一定是5個長度單位,而且3、4、5這三個數(shù)有這樣的關(guān)系:32+42=52.
(1)請你動動腦筋,能否驗證這個事實呢?該如何考慮呢?
(2)請你觀察下列圖形,直角三角形ABC的兩條直角邊的長分別為AC=7,BC=4,請你研究這個直角三角形的斜邊AB的長的平方是否等于42+72?
【答案】見解析
【解析】
(1)邊長的平方即以此邊長為邊的正方形的面積,故可通過面積驗證.分別以這個直角三角形的三邊為邊向外做正方形,求出三個正方形的面積,即可證明;
(2)關(guān)鍵是計算S正方形ABED=S正方形KLCJ﹣4SRt△ABC,再加以驗證即可.
(1)邊長的平方即以此邊長為邊的正方形的面積,故可通過面積驗證.分別以這個直角三角形的三邊為邊向外作正方形,如圖:AC=4,BC=3,
S正方形ABED=S正方形FCGH﹣4SRt△ABC
=(3+4)2﹣4××3×4
=72﹣24
=25,
即AB2=25,
又∵AC=4,BC=3,
AC2+BC2=42+32=25
∴AB2=AC2+BC2.
(2)如圖
S正方形ABED=S正方形KLCJ﹣4SRt△ABC=(4+7)2﹣4××4×7=121﹣56=65=42+72.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=7 cm,AC=25 cm.點P從點A沿AB方向以1 cm/s的速度運動至點B,點Q從點B沿BC方向以6 cm/s的速度運動至點C,P,Q兩點同時出發(fā).
(1)求BC的長;
(2)當(dāng)點P,Q運動2 s時,求P,Q兩點之間的距離;
(3)P,Q兩點運動幾秒時,AP=CQ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金秋十月,長沙市某中學(xué)組織七年級學(xué)生去某綜合實踐基地進行秋季社會實踐活動,每人需購買一張門票,該綜合實踐基地的門票價格為每張240元,如果一次購買500張以上(不含500張)門票,則門票價格為每張220元,請回答下列問題:
(1)列式表示n個人參加秋季社會實踐活動所需錢數(shù);
(2)某校用132000元可以購買多少張門票;
(3)如果我校490人參加秋季社會實踐,怎樣購買門票花錢最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C 為數(shù)軸上三點,若點 C 到點 A 的距離是點 C 到點 B 的距離的 2倍,則稱點 C 是(A,B)的奇異點,例如圖 1 中,點 A 表示的數(shù)為﹣1,點B 表示的數(shù)為 2,表示 1 的點 C 到點 A 的距離為 2,到點 B 的距離為 1,則點C 是(A,B)的奇異點,但不是(B,A)的奇異點.
(1)在圖 1 中,直接說出點 D 是(A,B)還是(B,C)的奇異點;
(2)如圖 2,若數(shù)軸上 M、N 兩點表示的數(shù)分別為﹣2 和 4,(M,N)的奇異點 K 在 M、N 兩點之間,請求出 K 點表示的數(shù);
(3)如圖 3,A、B 在數(shù)軸上表示的數(shù)分別為﹣20 和 40,現(xiàn)有一點 P 從點 B 出發(fā),向左運動.
①若點 P 到達點 A 停止,則當(dāng)點 P 表示的數(shù)為多少時,P、A、B 中恰有一個點為其余兩點的奇異點?
②若點 P 到達點 A 后繼續(xù)向左運動,是否存在使得 P、A、B 中恰有一個點為其余兩點的奇異點的情況?若存在,請直接寫出此時 PB 的距離;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2+bx+c與x軸交于A(5,0)、B(﹣1,0)兩點,過點A作直線AC⊥x軸,交直線y=2x于點C;
(1)求該拋物線的解析式;
(2)求點A關(guān)于直線y=2x的對稱點A′的坐標(biāo),判定點A′是否在拋物線上,并說明理由;
(3)點P是拋物線上一動點,過點P作y軸的平行線,交線段CA′于點M,是否存在這樣的點P,使四邊形PACM是平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的小圓圈按一定規(guī)律所組成的,其中第①個圖形中一共有6個小圓圈,第②個圖形中一共有9個小圓圈,第③個圖形中一共有12個小圓圈,…,按此規(guī)律排列,則第⑩個圖形中小圓圈的個數(shù)為( )
A. 24 B. 27 C. 30 D. 33
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,∠AOB和∠COD共頂點O,OB和OD重合,OM為∠AOD的平分線,ON為∠BOC的平分線,∠AOB=α,∠COD=β.
(1)如圖2,若α=90°,β=30°,則∠MON=________;
(2)若將∠COD繞O逆時針旋轉(zhuǎn)至圖3的位置,求∠MON;(用α,β表示)
(3)如圖4,若α=2β,∠COD繞O逆時針旋轉(zhuǎn),轉(zhuǎn)速為3°/秒,∠AOB繞O同時逆時針旋轉(zhuǎn),轉(zhuǎn)速為1°/秒(轉(zhuǎn)到OC與OA共線時停止運動),且OE平分∠BOD,請判斷∠COE與∠AOD的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的頂點O在坐標(biāo)原點,頂點A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點順時針旋轉(zhuǎn)105°至OA′B′C′的位置,則點B′的坐標(biāo)為( )
A.( ,﹣ )
B.(﹣ , )
C.(2,﹣2)
D.( ,﹣ )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com