【題目】如圖,反比例函數(shù)的圖象過格點(diǎn)(網(wǎng)格線的交點(diǎn))

1)求反比例函數(shù)的解析式;

2)若點(diǎn)是該雙曲線第一象限上的一點(diǎn),且,

填空:①直線的解析式為_______;②點(diǎn)的坐標(biāo)為______

【答案】1;(2)①,②

【解析】

1)把格點(diǎn)A1,3)代入解析式即可得到答案.(2)①過OOA的垂線構(gòu)造出兩組全等三角形,得到B3,-1)及AC=BC,求出點(diǎn)C的橫坐標(biāo)為3,用AC=BC建立方程求解即可得出結(jié)論; ②聯(lián)立直線OP和雙曲線解析式,解得即可得出結(jié)論.

解:(1反比例函數(shù)的圖象過格點(diǎn),

反比例函數(shù)的解析式為;

2)①如圖,過點(diǎn)OOA的垂線OE,取軸上點(diǎn)(3,0), 記D,則D3,0),過A作軸與,而,,

過點(diǎn)DBD軸,交OEB,OPC,

,

,,,

,

, ∴

設(shè),,

,

, ∴,

, 設(shè)直線OP的解析式為,

, ∴,

∴直線OP的解析式為,

故答案為:;

②由①知,直線OP的解析式為,

由(1)知,反比例函數(shù)解析式為,

所以, 解得:

(由于點(diǎn)P在第一象限內(nèi),所以,舍去),

,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,∠AOC=30°,半徑為2cmP的圓心在射線OA上,且與點(diǎn)O的距離為6cm,如果P1cm/s的速度沿直線ABAB的方向移動(dòng),那么P與直線CD相切時(shí)P運(yùn)動(dòng)的時(shí)間是(

A.3秒或10B.3秒或8C.2秒或8D.2秒或10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACBCAB345,⊙O沿著ABC的內(nèi)部邊緣滾動(dòng)一圈,若⊙O的半徑為1,且圓心O運(yùn)動(dòng)的路徑長(zhǎng)為18,則ABC的周長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y(k0)的圖象交于AB點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的半標(biāo)為(2,3)

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)如圖,若將點(diǎn)C沿y軸向上平移4個(gè)單位長(zhǎng)度至點(diǎn)F,連接AF、BF,求△ABF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形ABCD中,∠A120°,點(diǎn)EBC邊的中點(diǎn),點(diǎn)P是對(duì)角線BD上一動(dòng)點(diǎn),設(shè)PD的長(zhǎng)度為x,PEPC的長(zhǎng)度和為y,圖2y關(guān)于x的函數(shù)圖象,其中H是圖象上的最低點(diǎn),則a+b的值為( 。

A.7B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等邊△ABCD點(diǎn)為AB邊上一動(dòng)點(diǎn),E為直線AC上一點(diǎn),將△ADE沿著DE折疊,點(diǎn)A落在直線BC上,對(duì)應(yīng)點(diǎn)為F,若AB4,BFFC13,則線段AE的長(zhǎng)度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));當(dāng)﹣1<x<3時(shí),y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將二次函數(shù)yax2的圖象先向下平移2個(gè)單位,再向右平移3個(gè)單位,截x軸所得的線段長(zhǎng)為4,則a=(

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理歷史悠久,三國(guó)時(shí)期的趙爽證明了勾股定理,后人借助“趙爽弦圖”,用三個(gè)正方形證明勾股定理,如圖所示,B,C,M,G在同一條直線上,四邊形ABCD,四邊形CEFG,四邊形AMFN都為正方形,若五邊形ABGFN的面積為34,CM=2,則△ABM的面積為( )

A.10B.C.5D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案