【題目】如圖所示,等邊△ABC中D點(diǎn)為AB邊上一動(dòng)點(diǎn),E為直線AC上一點(diǎn),將△ADE沿著DE折疊,點(diǎn)A落在直線BC上,對(duì)應(yīng)點(diǎn)為F,若AB=4,BF:FC=1:3,則線段AE的長(zhǎng)度為_____.
【答案】或14
【解析】
點(diǎn)E在直線AC上,本題分兩類討論,翻折后點(diǎn)F在BC線段上或點(diǎn)F在CB延長(zhǎng)線上,根據(jù)一線三角的相似關(guān)系求出線段長(zhǎng).
解:按兩種情況①點(diǎn)F在線段BC上,如圖所示,由折疊性質(zhì)可知
∠A=∠DFE=60°
∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C
∴△BDF∽△CFE,∴
∵AB=4,BF:FC=1:3
∴BF=1,CF=3
設(shè)AE=x,則EF=AE=x,CE=4﹣x
∴
解得BD=,DF=
∵BD+DF=AD+BD=4
∴
解得x=,經(jīng)檢驗(yàn)當(dāng)x=時(shí),4﹣x≠0
∴x=是原方程的解
②當(dāng)點(diǎn)F在線段CB的延長(zhǎng)線上時(shí),如圖所示,同理可知
△BDF∽△CFE
∴
∵AB=4,BF:FC=1:3,可得BF=2,CF=6
設(shè)AE=a,可知AE=EF=a,CE=a﹣4
∴
解得BD=,DF=
∵BD+DF=BD+AD=4
∴解得a=14
經(jīng)檢驗(yàn)當(dāng)a=14時(shí),a﹣4≠0
∴a=14是原方程的解,綜上可得線段AE的長(zhǎng)為或14
故答案為或14
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,過點(diǎn)B作BD⊥AB,點(diǎn)C,D都在AB上方,AD交△BCD的外接圓⊙O于點(diǎn)E.
(1)求證:∠CAB=∠AEC.
(2)若BC=3.
①EC∥BD,求AE的長(zhǎng).
②若△BDC為直角三角形,求所有滿足條件的BD的長(zhǎng).
(3)若BC=EC= ,則= .(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,(1)正方形ABCD及等腰Rt△AEF有公共頂點(diǎn)A,∠EAF=90°, 連接BE、DF.將Rt△AEF繞點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,BE、DF具有怎樣的數(shù)量關(guān)系和位置關(guān)系?結(jié)合圖(1)給予證明;
(2)將(1)中的正方形ABCD變?yōu)榫匦?/span>ABCD,等腰Rt△AEF變?yōu)?/span>Rt△AEF,且AD=kAB,AF=kAE,其他條件不變.(1)中的結(jié)論是否發(fā)生變化?結(jié)合圖(2)說明理由;
(3)將(2)中的矩形ABCD變?yōu)槠叫兴倪呅?/span>ABCD,將Rt△AEF變?yōu)?/span>△AEF,且∠BAD=∠EAF=,其他條件不變.(2)中的結(jié)論是否發(fā)生變化?結(jié)合圖(3),如果不變,直接寫出結(jié)論;如果變化,直接用k表示出線段BE、DF的數(shù)量關(guān)系,用表示出直線BE、DF形成的銳角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時(shí),一個(gè)月工作25天.月工資底薪800元,另加計(jì)件工資.加工1件A型服裝計(jì)酬16元,加工1件B型服裝計(jì)酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件A型服裝和2件B型服裝需4小時(shí),加工3件A型服裝和1件B型服裝需7小時(shí).(工人月工資=底薪+計(jì)件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時(shí)?
(2)一段時(shí)間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號(hào)的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請(qǐng)你運(yùn)用所學(xué)知識(shí)判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王從同事小李手中接收一批生產(chǎn)任務(wù),派單方要求必須在15天內(nèi)完成,屆時(shí)承以每件60元的價(jià)格全部回收,小王在接受任務(wù)之后,其生產(chǎn)的任務(wù)y(件)與生產(chǎn)的天數(shù)x(天)關(guān)系如圖1所示,其中在生產(chǎn)6天之后,每天的生產(chǎn)數(shù)量達(dá)到了30件.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為m元/件,m與x的函數(shù)圖象如圖2所示,若小王第x天的利潤(rùn)為W元,求W與x的關(guān)系式,并求出第幾天后小王的利潤(rùn)可達(dá)到最大值,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解全校3000名學(xué)生對(duì)學(xué)校設(shè)置的足球、籃球、乒乓球、羽毛球、排球共五項(xiàng)球類活動(dòng)的喜愛情況,在全校范圍內(nèi)隨機(jī)調(diào)查了m名學(xué)生(每名學(xué)生必選且只能選擇這五項(xiàng)活動(dòng)中的一種)進(jìn)行了問卷調(diào)查,將統(tǒng)計(jì)數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)m= ,n= .并補(bǔ)全圖中的條形統(tǒng)計(jì)圖.
(2)請(qǐng)你估計(jì)該校約有多少名學(xué)生喜愛打乒乓球.
(3)在抽查的m名學(xué)生中,有A、B、C、D等10名學(xué)生喜歡羽毛球活動(dòng),學(xué)校打算從A、B、C、D這4名女生中,選取2名參加全市中學(xué)生女子羽毛球比賽,請(qǐng)用列表法或畫樹狀圖法,求同時(shí)選中B、C的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“優(yōu)秀傳統(tǒng)文化進(jìn)校園”活動(dòng)中,學(xué)校計(jì)劃每周二下午第三節(jié)課時(shí)間開展此項(xiàng)活動(dòng),擬開展活動(dòng)項(xiàng)目為:剪紙,武術(shù),書法,器樂,要求七年級(jí)學(xué)生人人參加,并且每人只能參加其中一項(xiàng)活動(dòng).教務(wù)處在該校七年級(jí)學(xué)生中隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,并對(duì)此進(jìn)行統(tǒng)計(jì),繪制了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).
請(qǐng)解答下列問題:
(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)在參加“剪紙”活動(dòng)項(xiàng)目的學(xué)生中,男生所占的百分比是多少?
(3)若該校七年級(jí)學(xué)生共有500人,請(qǐng)估計(jì)其中參加“書法”項(xiàng)目活動(dòng)的有多少人?
(4)學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機(jī)抽取一人了解具體情況,那么正好抽到參加“器樂”活動(dòng)項(xiàng)目的女生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《如果想毀掉一個(gè)孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國(guó)際上,法國(guó)教育部宣布從 2018 年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開展了“手機(jī)伴我健康行”主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時(shí)間”的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是 40人.請(qǐng)你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對(duì)應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時(shí)間在2 小時(shí)以上(不含2小時(shí))的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com