【題目】如圖所示,(1)正方形ABCD及等腰RtAEF有公共頂點(diǎn)A,EAF90°, 連接BE、DF.RtAEF繞點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,BE、DF具有怎樣的數(shù)量關(guān)系和位置關(guān)系?結(jié)合圖(1)給予證明;

(2)將(1)中的正方形ABCD變?yōu)榫匦?/span>ABCD,等腰RtAEF變?yōu)?/span>RtAEF,且ADkAB,AFkAE,其他條件不變.(1)中的結(jié)論是否發(fā)生變化?結(jié)合圖(2)說明理由;

(3)將(2)中的矩形ABCD變?yōu)槠叫兴倪呅?/span>ABCD,將RtAEF變?yōu)?/span>AEF,且∠BADEAF,其他條件不變.(2)中的結(jié)論是否發(fā)生變化?結(jié)合圖(3),如果不變,直接寫出結(jié)論;如果變化,直接用k表示出線段BE、DF的數(shù)量關(guān)系,用表示出直線BE、DF形成的銳角.

【答案】1DF=BEDFBE,證明見解析;(2)數(shù)量關(guān)系改變,位置關(guān)系不變,即DF=kBE,DFBE;(3)不改變.DF=kBE,β=180°-α

【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的過程中線段的長度不變,得到AF=AE,又∠BAE∠DAF都與∠BAF互余,所以∠BA E=∠DAF,所以△FAD≌△EAB,因此BEDF相等,延長DFBEG,根據(jù)全等三角形的對(duì)應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因?yàn)榫匦蔚泥忂叢幌嗟,但根?jù)題意,可以得到對(duì)應(yīng)邊成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根據(jù)相似三角形的對(duì)應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EHF=90°,所以DF⊥BE;

3)與(2)的證明方法相同,但根據(jù)相似三角形的對(duì)應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EAF+∠EHF=180°,所以DFBE的夾角β=180°-α

試題解析:(1DFBE互相垂直且相等.

證明:延長DF分別交AB、BE于點(diǎn)PG

在正方形ABCD和等腰直角△AEF

AD=AB,AF=AE,

∠BAD=∠EAF=90°

∴∠FAD=∠EAB

∴△FAD≌△EAB2分)

∴∠AFD=∠AEB,DF="BE"

∵∠AFD+∠AFG=180°

∴∠AEG+∠AFG=180°,

∵∠EAF=90°,

∴DF⊥BE

2)數(shù)量關(guān)系改變,位置關(guān)系不變.DF=kBE,DF⊥BE

延長DFEB于點(diǎn)H

∵AD=kAB,AF="kAE"

,

∵∠BAD=∠EAF="a"

∴∠FAD=∠EAB

∴△FAD∽△EAB

∴DF="kBE"

∵△FAD∽△EAB,

∴∠AFD=∠AEB,

∵∠AFD+∠AFH=180°,

∴∠AEH+∠AFH=180°,

∵∠EAF=90°,

∴∠EHF=180°-90°=90°,

∴DF⊥BE

3)不改變.DF=kBEβ=180°-a

延長DFEB的延長線于點(diǎn)H,

∵AD=kABAF="kAE"

,

∵∠BAD=∠EAF="a"

∴∠FAD=∠EAB

∴△FAD∽△EAB

∴DF=kBE

△FAD∽△EAB∠AFD=∠AEB

∵∠AFD+∠AFH=180°

∴∠AEB+∠AFH=180°

四邊形AEHF的內(nèi)角和為360°,

∴∠EAF+∠EHF=180°

∵∠EAF=α∠EHF=β

∴a+β=180°∴β=180°-a

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過CCDAB于點(diǎn)DCDAE于點(diǎn)F,過CCGAEBA的延長線于點(diǎn)G

1)求證:CG是⊙O的切線.

2)求證:AFCF

3)若sinG0.6,CF4,求GA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的邊OAOC分別在x軸、y軸上,點(diǎn)B 的坐標(biāo)為(8,4),反比例函數(shù)y=(k>0)的圖象分別交邊BC、AB 于點(diǎn)D、E,連結(jié)DE,△DEF與△DEB關(guān)于直線DE對(duì)稱,當(dāng)點(diǎn)F恰好落在線段OA上時(shí),則k的值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y的圖象經(jīng)過第一象限內(nèi)的一點(diǎn)A(n,4),過點(diǎn)AABx軸于點(diǎn)B,且△AOB的面積為2

(1)mn的值;

(2)若一次函數(shù)ykx+2的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)C,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸、y軸交于A、B兩點(diǎn),交反比例函數(shù)于C、D兩點(diǎn),DEx軸于點(diǎn)E,已知C點(diǎn)的坐標(biāo)是(6-1),DE=3

(1)求反比例函數(shù)與一次函數(shù)的解析式

(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值.

(3)OAD的面積SOAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykxb的圖象與反比例函數(shù)y (x0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)C,PBx軸于點(diǎn)B,點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱.

(1)求一次函數(shù)、反比例函數(shù)的解析式;

(2)求證:點(diǎn)C為線段AP的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等邊△ABCD點(diǎn)為AB邊上一動(dòng)點(diǎn),E為直線AC上一點(diǎn),將△ADE沿著DE折疊,點(diǎn)A落在直線BC上,對(duì)應(yīng)點(diǎn)為F,若AB4BFFC13,則線段AE的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+mx+nx軸交于A,B兩點(diǎn),y與軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D.已知A(﹣10),C0,3

1)求拋物線的解析式;

2)在拋物線的對(duì)稱軸上是否存在P點(diǎn),使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;

3)在BC上方的拋物線上,是否存在點(diǎn)E,使得△BCE的面積最大?若存在,求出點(diǎn)E的坐標(biāo)和△BCE的面積最大值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB4,點(diǎn)E、F分別在CDAD上,CEDFBE、CF相交于點(diǎn)G,若圖中陰影部分的面積與正方形ABCD的面積之比為34,則△BCG的面積為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案