【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論: ①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0.
其中結(jié)論正確的是 . (填正確結(jié)論的序號)

【答案】①②⑤
【解析】解:①由圖知:拋物線與x軸有兩個不同的交點,則△=b2﹣4ac>0,∴b2>4ac,故①正確; ②拋物線開口向上,得:a>0;
拋物線的對稱軸為x=﹣ =1,b=﹣2a,故b<0;
拋物線交y軸于負半軸,得:c<0;
所以abc>0;
故②正確;
③∵拋物線的對稱軸為x=﹣ =1,b=﹣2a,
∴2a+b=0,故2a﹣b=0錯誤;
④根據(jù)②可將拋物線的解析式化為:y=ax2﹣2ax+c(a≠0);
由函數(shù)的圖象知:當x=﹣2時,y>0;即4a﹣(﹣4a)+c=8a+c>0,故④錯誤;
⑤根據(jù)拋物線的對稱軸方程可知:(﹣1,0)關(guān)于對稱軸的對稱點是(3,0);
當x=﹣1時,y<0,所以當x=3時,也有y<0,即9a+3b+c<0;故⑤正確;
所以這結(jié)論正確的有①②⑤.
所以答案是:①②⑤.
【考點精析】通過靈活運用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,A=70°B=50°,點D,E分別為AB,AC上的點,沿DE折疊,使點A落在BC邊上點F處,若EFC為直角三角形,則BDF的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D,E分別是AC,AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定△ABC是等腰三角形(用序號寫出一種情形):_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為12m的房墻,另外三邊用25m長的建筑材料圍成,為了方便進出,在垂直于房墻的一邊留一個1m寬的門.
(1)所圍成矩形豬舍的長、寬分別是多少時,豬舍面積為80m2?
(2)為做好豬舍的衛(wèi)生防疫,現(xiàn)需要對圍成的矩形進行硬底化,若以房墻的長為矩形豬舍一邊的長,且已知硬底化的造價為60元/平方米,請你幫助農(nóng)戶計算矩形豬舍硬底化需要的費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某新建火車站站前廣場需要綠化的面積為46000米2 , 施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項綠化工程.
(1)該項綠化工程原計劃每天完成多少米2?
(2)該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56m2 , 兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是菱形,△AEF是正三角形,E、F分別在BC、CD上,且EF=CD,則∠BAD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(1) (2)

(3) (4)(3x+y)(-y+3x)

(5)2a(a-2a3)-(-3a2)2; (6)(x-3)(x+2)-(x+1)2

查看答案和解析>>

同步練習(xí)冊答案