【題目】下列各式變形中,正確的是( )
A.x2?x3=x6
B. =|x|
C.(x2﹣ )÷x=x﹣1
D.x2﹣x+1=(x﹣ )2+
【答案】B
【解析】解:A、x2x3=x5 , 故此選項錯誤;
B、 =|x|,正確;
C、(x2﹣ )÷x=x﹣ ,故此選項錯誤;
D、x2﹣x+1=(x﹣ )2+ ,故此選項錯誤;
故選:B.
【考點精析】掌握分式的混合運算和二次根式的性質(zhì)與化簡是解答本題的根本,需要知道運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當有多層括號時,先算括號內(nèi)的運算,從里向外{[(?)]};1、如果被開方數(shù)是分數(shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進行化簡.2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△AOB的頂點O在直線l上,且AO=AB.
(1)畫出△AOB關于直線l成軸對稱的圖形△COD,且使點A的對稱點為點C ;
(2)在(1)的條件下,AC與BD的位置關系是________;
(3)在(1)、(2)的條件下,聯(lián)結(jié)AD,如果∠ABD=2∠ADB,求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E(與點B、C不重合)是BC邊上一點,將線段EA繞點E順時針旋轉(zhuǎn)90°到EF,過點F作BC的垂線交BC的延長線于點G,連接CF.
(1)求證:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF , 求BE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一淘寶店主購進、兩款恤在網(wǎng)上進行銷售,款恤每件價格元,款恤每件價格元,第一批共購買件.
(1)該淘寶店主第一批購進的恤的總費用不超過元,求款恤最少購買多少件?
(2)由于銷售情況良好,該淘寶店主打算購進第二批恤,購進的、兩款恤件數(shù)之比為,價格保持第一批的價格不變;第三批購進款恤的價格在第一批購買的價格上每件減少了元,款恤的價格比第一批購進的價格上每件增加了元,款恤的數(shù)量比第二批增加了,款恤的數(shù)量比第二批減少了,第二批與第三批購進的恤的總費用相同,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=∠C,點P在邊AB上.
(1)判斷四邊形ABCD的形狀并加以證明;
(2)若AB=AD,以過點P的直線為軸,將四邊形ABCD折疊,使點B、C分別落在點B′、C′上,且B′C′經(jīng)過點D,折痕與四邊形的另一交點為Q.
①在圖2中作出四邊形PB′C′Q(保留作圖痕跡,不必說明作法和理由);
②如果∠C=60°,那么 為何值時,B′P⊥AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,∠A=30°,在同一平面內(nèi),以對角線BD為底邊作頂角為120°的等腰三角形BDE,則∠EBC的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點F在邊AC上,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,若點P能落在線段AB上,則線段CF長的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李老師家距學校1900米,某天他步行去上班,走到路程的一半時發(fā)現(xiàn)忘帶手機,此時離上班時間還有23分鐘,于是他立刻步行回家取手機,隨后騎電瓶車返回學校.已知李老師騎電瓶車到學校比他步行到學校少用20分鐘,且騎電瓶車的平均速度是步行速度的5倍,李老師到家開門、取手機、啟動電瓶車等共用4分鐘.
(1)求李老師步行的平均速度;
(2)請你判斷李老師能否按時上班,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=2,BC=AC,D為AB的中點,E為BC上一點,將△BDE沿DE翻折,得到△FDE,EF交AC于點G,則△ECG的周長是___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com