【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點F在邊AC上,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,若點P能落在線段AB上,則線段CF長的最小值是_____

【答案】

【解析】

根據(jù)折疊的性質得到PF=CF,∠FPE=∠C=90°,PF=CE,當PF取最小值時,CF的值最小,推出當FP⊥AB時,PF的值最小,此時,點BE重合,根據(jù)勾股定理列方程即可得到結論.

∵將CEF沿直線EF翻折,點C落在點P處,
PF=CF,FPE=C=90,PF=CE,
∵當PF取最小值時,CF的值最小,
∵點P能落在線段AB上,
∴當FPAB時,PF的值最小,
此時,點BE重合,
BP=BC=8,
AP=2,AF=6CF,
AF2=AP2+PF2,
(6CF)2=22+CF2,
CF=,
CF的最小值是.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(A在B的左側),與y軸交于點C(0,3),已知對稱軸x=1.

(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(包括△OBC的邊界),求h的取值范圍;
(3)設點P是拋物線L上任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,以為腰向正方形內部作等腰,點上,且連接并延長,與交于點, 延長線交于點連接于點,連接,,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式變形中,正確的是(
A.x2?x3=x6
B. =|x|
C.(x2 )÷x=x﹣1
D.x2﹣x+1=(x﹣ 2+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一個足球垂直水平地面向上踢,時間為t(秒)時該足球距離地面的高度h(米)適用公式h=20t﹣5t2(0≤t≤4).
(1)當t=3時,求足球距離地面的高度;
(2)當足球距離地面的高度為10米時,求t;
(3)若存在實數(shù)t1 , t2(t1≠t2)當t=t1或t2時,足球距離地面的高度都為m(米),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標系內的圖象大致為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,在正方形ABCD中,E、F分別是邊BC、CD上的點,且∠EAF=45°,把△ADF繞著點A順時針旋轉90°得到△ABG,請直接寫出圖中所有的全等三角形;

(2)在四邊形ABCD中,AB=AD,B=D=90°.

①如圖2,若E、F分別是邊BC、CD上的點,且2EAF=BAD,求證:EF=BE+DF;

②若E、F分別是邊BC、CD延長線上的點,且2EAF=BAD,①中的結論是否仍然成立?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個等式.例

如圖1可以得到.請解答下列問題:

(1)根據(jù)圖2,完成數(shù)學等式: = ;

(2)觀察圖3,寫出圖3中所表示的等式:        =____________.

(3)若、、,且,請利用(2)所得的結論求:的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了從甲、乙兩名射擊運動員中選拔一名參加比賽,對這兩名運動員進行測試,他們10次射擊命中的環(huán)數(shù)如下:

7

9

8

6

10

7

9

8

6

10

7

8

9

8

8

6

8

9

7

10

根據(jù)測試成績,你認為選擇哪一名運動員參賽更好?為什么?

查看答案和解析>>

同步練習冊答案