【題目】如圖,在正方形中,以為腰向正方形內(nèi)部作等腰,點(diǎn)在上,且.連接并延長(zhǎng),與交于點(diǎn), 與延長(zhǎng)線交于點(diǎn).連接交于點(diǎn),連接.若,,則______.
【答案】
【解析】
設(shè)DG=3a,CG=9a,作KM⊥CD于M,EN⊥AB于N,想辦法求出線段KF、EF、KM、EN、FG,想辦法用a的代數(shù)式表示四邊形EFKC的面積,再求出a即可解決問(wèn)題;
解:∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠BAD=∠ADC=90°,
∵CG=3DG,
∴可以假設(shè)DG=3a,CG=9a,
則AB=AD=BC=CD=12a,
∴DG∥AB,
∴===,
∴DH=4a,GH=5a,BH=20a,
∵AE2=BFBH,AE=AB,
∴AB2=BFBH,
∴=,∵∠ABF=∠ABH,
∴△ABF∽HBA,
∴∠AFB=∠BAH=90°,
∴AF==a,BF=a,
∴FG=BH-BF-GH=a,
∵AE=AD,
∴∠ADE=∠AED,
∵∠ADE+∠GDK=90°,∠KEF+∠EKF=90°,∠EKF=∠GKD,
∴∠GDK=∠GKD,
∴GD=GK=3a,
作KM⊥CD于M,EN⊥AB于N,
∵=,
∴KM=a,
∵△AFB≌△ANE,
∴EN=BF=a,
∴S四邊形EFKC=S△EFK+S△ECK
=s△EFK+(S△CDE-S△CDK)
=×a×a+(×12a×a-×12a×a)
=a2,
∵FG=a=,
∴a=,
∴S四邊形EFKC=,
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB的垂直平分線分別交AB、BC于點(diǎn)D、E,AC的垂直平分線分別交AC、BC于點(diǎn)F、G,若∠BAC=100°,則∠EAG=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)BF⊥CE于點(diǎn)F,交CD于點(diǎn)G(如圖①).求證:AE=CG;
(2)AH⊥CE,垂足為H,交CD的延長(zhǎng)線于點(diǎn)M(如圖②),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E(與點(diǎn)B、C不重合)是BC邊上一點(diǎn),將線段EA繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°到EF,過(guò)點(diǎn)F作BC的垂線交BC的延長(zhǎng)線于點(diǎn)G,連接CF.
(1)求證:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF , 求BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】概念學(xué)習(xí)
規(guī)定:如果一個(gè)三角形的三個(gè)角分別等于另一個(gè)三角形的三個(gè)角,那么稱(chēng)這兩個(gè)三角形互為“等角三角形”.
從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原來(lái)三角形是“等角三角形”,我們把這條線段叫做這個(gè)三角形的“等角分割線”.
理解概念
如圖1,在中,,,請(qǐng)寫(xiě)出圖中兩對(duì)“等角三角形”概念應(yīng)用
如圖2,在中,CD為角平分線,,.
求證:CD為的等角分割線.
在中,,CD是的等角分割線,直接寫(xiě)出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一淘寶店主購(gòu)進(jìn)、兩款恤在網(wǎng)上進(jìn)行銷(xiāo)售,款恤每件價(jià)格元,款恤每件價(jià)格元,第一批共購(gòu)買(mǎi)件.
(1)該淘寶店主第一批購(gòu)進(jìn)的恤的總費(fèi)用不超過(guò)元,求款恤最少購(gòu)買(mǎi)多少件?
(2)由于銷(xiāo)售情況良好,該淘寶店主打算購(gòu)進(jìn)第二批恤,購(gòu)進(jìn)的、兩款恤件數(shù)之比為,價(jià)格保持第一批的價(jià)格不變;第三批購(gòu)進(jìn)款恤的價(jià)格在第一批購(gòu)買(mǎi)的價(jià)格上每件減少了元,款恤的價(jià)格比第一批購(gòu)進(jìn)的價(jià)格上每件增加了元,款恤的數(shù)量比第二批增加了,款恤的數(shù)量比第二批減少了,第二批與第三批購(gòu)進(jìn)的恤的總費(fèi)用相同,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=∠C,點(diǎn)P在邊AB上.
(1)判斷四邊形ABCD的形狀并加以證明;
(2)若AB=AD,以過(guò)點(diǎn)P的直線為軸,將四邊形ABCD折疊,使點(diǎn)B、C分別落在點(diǎn)B′、C′上,且B′C′經(jīng)過(guò)點(diǎn)D,折痕與四邊形的另一交點(diǎn)為Q.
①在圖2中作出四邊形PB′C′Q(保留作圖痕跡,不必說(shuō)明作法和理由);
②如果∠C=60°,那么 為何值時(shí),B′P⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,點(diǎn)E為邊BC上的動(dòng)點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,若點(diǎn)P能落在線段AB上,則線段CF長(zhǎng)的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及平行四邊形ABDC的面積.
(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使=2,若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說(shuō)明理由.
(3)點(diǎn)P是四邊形ABCD邊上的點(diǎn),若△OPC為等腰三角形時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com