【題目】如圖,一次函數(shù)y=﹣2x+4x軸,y軸分別交于A,B,以線段AB為直角邊在第一象限內(nèi)作Rt△ABC,使AB=AC.

(1)求直線AC的函數(shù)關(guān)系式;

(2)若P(m,3)在第二象限內(nèi),求當△PAB△ABC面積相等時m的值.

【答案】(1)y=x﹣1;(2)m=﹣

【解析】

(1)過點C作CDx軸于點D,利用△ABO≌△CAD,求出點C的坐標,最后利用待定系數(shù)法求出AC的解析式.

(2)過點P作PEx軸于點E,利用勾股定理即可求出AB=AC=2,利用S△APB=SOAB+S△OPB﹣S△OPA列出方程求出m的值.

(1)令x=0代入y=﹣2x+4中

∴y=4,

∴B(0,4)

令y=0代入y=﹣2x+4中

∴x=2,

∴A(2,0)

過點C作CDx軸于點D,

∵∠BAC=90°,

∴∠DAC+∠BAO= +∠BAO=90°,

∴∠ABO=∠DAC,

ABO與CAD中,

∴△ABO≌△CAD(AAS)

∴C∠ABO D=OA=2,AD=OB=4,

∴OD=6,

∴C(6,2)

設(shè)直線AC的解析式為y=kx+b

解得:

直線AC的解析式為:y=x﹣1

(2)過點P作PEx軸于點E,

∴PE=3,OE=﹣m

∵AB=AC=2

∴S△ABC=ACAB=×2×2=10

∴S△APB=SOAB+S△OPB﹣S△OPA

=AOBO+OBOE﹣OAPE

=1﹣2m

∴1﹣2m=10

∴m=﹣

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( )
A.a6÷a2=a3
B.(a32=a5
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了拉動內(nèi)需,全國各地汽車購置稅補貼活動在2009年正式開始,某經(jīng)銷商在政策出臺前一個月共售出某品牌汽車的手動型和自動型共960臺,政策出臺后的第一個月售出這兩種型號的汽車共1228臺,其中手動型和自動型汽車的銷售量分別比政策出臺前一個月增長30%25%

1)在政策出臺前一個月,銷售的手動型和自動型汽車分別為多少臺?

2)若手動型汽車每臺價格為8萬元,自動型汽車每臺價格為9萬元.根據(jù)汽車補貼政策,政府按每臺汽車價格的5%給購買汽車的用戶補貼,問政策出臺后的第一個月,政府對這1228臺汽車用戶共補貼了多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON∠AOC的平分線,OM∠BOC的平分線.

1)求∠MON的大小.

2)當銳角∠AOC的大小發(fā)生改變時,∠MON的大小是否發(fā)生改變?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)

(2)(3+)(3﹣)﹣(1﹣2

(3)我們已經(jīng)學習了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運用十字相乘法,請從以下一元二次方程中任選一個,并選擇你認為適當?shù)姆椒ń膺@個方程.

①x2﹣4x﹣1=0 ②x(2x+1)=8x﹣3 ③x2+3x+1=0 ④x2﹣9=4(x﹣3)

我選擇第幾個方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4AB=7,

1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;

2)求DE的長度;

3BEDF的位置關(guān)系如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某藥物研究單位試制成功一種新藥,經(jīng)測試,如果患者按規(guī)定劑量服用,那么服藥后每毫升血液中含藥量y(微克)隨時間x(小時)之間的關(guān)系如圖所示,如果每毫升血液中的含藥量不小于20微克,那么這種藥物才能發(fā)揮作用,請根據(jù)題意回答下列問題:

(1)服藥后,大約   分鐘后,藥物發(fā)揮作用.

(2)服藥后,大約   小時,每毫升血液中含藥量最大,最大值是   微克;

(3)服藥后,藥物發(fā)揮作用的時間大約有   小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索規(guī)律,觀察下面算式,解答問題.

1+3 =4 =22;

1+3+5=9=32;

1+3+5+7=16=42;

1+3+5+7+9=25=52;

(1)請猜想1+3+5+7+9+…+19=

(2)請猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=

(3)試計算:101 +103+…+197 +199.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下面各題
(1)計算:
(2)解分式方程:

查看答案和解析>>

同步練習冊答案