【題目】已知:CD是經(jīng)過∠BCA頂點C的一條直線,CACBEF分別是直線CD上兩點,且∠BEC=∠CFA=∠α

(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F在射線CD上.

①如圖1,若∠BCA90°,∠α90°,則BE CF;

②如圖2,若<∠BCA<180°,請?zhí)砑右粋關于∠α與∠BCA關系的條件 ,使①中的結(jié)論仍然成立,并說明理由;

(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢鲫P于EFBE,AF三條線段數(shù)量關系的合理猜想:

【答案】1)①=;②∠BCA180°-∠α,詳見解析;(2EFBEAF

【解析】

1)①求出∠BEC=AFC=90°,∠CBE=ACF,根據(jù)AASBCE≌△CAF,推出BE=CFCE=AF即可得出結(jié)論;

②求出∠BEC=AFC,∠CBE=ACF,根據(jù)AASBCE≌△CAF,推出BE=CF,CE=AF即可得出結(jié)論;

2)求出∠BEC=AFC,∠CBE=ACF,根據(jù)AASBCE≌△CAF,推出BE=CF,CE=AF即可得出結(jié)論.

1)①∵∠BCA=90°,∠BEC=CFA=α=90°

∴∠BCE+ACF=90°,∠FCA+FAC=90°

∴∠BCE=FAC,(同角的余角相等)

∵∠BEC=CFA,CA=CB

RtBCERtCAFAAS),

BE=CF

故答案為:“=”;

②∠α與∠BCA關系:∠BCA=180°-α

當∠BCA=180°-α時,①中結(jié)論仍然成立;

理由是:如圖2,

∵∠BEC=CFA=α,∠α+ACB=180°,即∠BEC+BCE+ACF=180°,

而∠CBE+BEC+BCE=180°,

∴∠CBE=ACF

BCECAF

,

∴△BCE≌△CAFAAS),

BE=CF

故答案為:∠BCA=180°-α;

2EFBE、AF的數(shù)量關系:EF=BE+AF

理由是:如圖3

∵∠BEC=CFA=α,∠α=BCA,

又∵∠EBC+BCE+BEC=180°,∠BCE+ACF+ACB=180°,

∴∠EBC+BCE=BCE+ACF

∴∠EBC=ACF,

BECCFA中,

∴△BEC≌△CFAAAS),

AF=CE,BE=CF

EF=CE+CF,

EF=BE+AF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點在正方形外,連接,過點的垂線交,若,則下列結(jié)論不正確的是(  )

A.B.到直線的距離為

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,點,點的坐標分別為,,

1)將平移后得到,若點對應的點的坐標為,畫出平移后的;

2)畫出關于原點成中心對稱的;

3)如果以,,為頂點的四邊形是平行四邊形,請直接寫出滿足條件的所有點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形中,動點分別從兩點同時出發(fā),以相同的速度在直線上移動;

(1)如圖①,當分別移動到邊的延長線上時,連接的關系為____ ;

(2)如圖②,己知正方形的邊長為分別從點同時出發(fā),以相同的速度沿方向向終點運動,連接,交于點,請你畫出點運動路線的草圖,試求出線段的最小值.

(3)如圖③,在(2)的條件下,求周長的最大值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,點C為OA的中點,CE⊥OA交 于點E,以點C為圓心,OA的長為直徑作半圓交CE于點D.若OA=4,則圖中陰影部分的面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了慶祝校園藝術節(jié),準備購買一批盆花布置校園.已知1A種花和2B種花一共需13,2A種花和1B種花一共需11.

(1)1A種花和1B種花的售價各是多少元?

(2)學校準備購進這兩種盆花共100,并且A種盆花的數(shù)量不超過B種盆花數(shù)量的2,請求出A種盆花的數(shù)量最多是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB//CD,點E為平面內(nèi)一點,BE⊥CEE

1)如圖1,請直接寫出∠ABE∠DCE之間的數(shù)量關系

2)如圖2,過點EEF⊥CD,垂足為F,求證:∠CEF=∠ABE

3)如圖3,在(2)的條件下,作EG平分∠CEF,交DF于點G,作ED平分∠BEF,交CDD,連接BD,若∠DBE+∠ABD180°,且∠BDE3GEF,求∠BEG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,邊上一點,將繞著點逆時針旋轉(zhuǎn)至,連接

1)如圖1,連接,當時,,若,,求線段的長.

2)如圖2,連接于點,若,點中點,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

1

2(公式法)

3

4(配方法)

查看答案和解析>>

同步練習冊答案