【題目】如圖,矩形的頂點、分別在軸,軸上,頂點在第二象限,點的坐標為.將線段繞點逆時針旋轉(zhuǎn)至線段,若反比例函數(shù)y=(k≠0)的圖象經(jīng)過A、D兩點,則k值為_________.
【答案】-.
【解析】
過點D作DE⊥x軸于點E,由點B的坐標為(-2,0)知OC=AB=-,由旋轉(zhuǎn)性質(zhì)知OD=OC=-、∠DOC=60°,據(jù)此求得OE=ODcos30°=-k,DE=ODsin30°=-k,即D(k,-k),代入解析式解之可得.
解:過點D作DE⊥x軸于點E,
∵點B的坐標為(-2,0),
∴AB=-,
∴OC=-,
由旋轉(zhuǎn)性質(zhì)知OD=OC=-、∠COD=60°,
∴∠DOE=30°,
∴DE=OD=-k,OE=ODcos30°= k,
即D(k,-k),
∵反比例函數(shù)y=(k≠0)的圖象經(jīng)過D點,
∴k=(k)(-k)=- k2,
解得:k=0(舍)或k=- ,
故答案為:-.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為個單位長度的小正方形組成的的網(wǎng)格中,給出了格點(網(wǎng)格線的交點)為端點的線段
(1)將線段通過平移使得點和點重合,點的對應點為,則應該先將線段向 平移個單位,再向上平移 個 單位,畫出平移后對應的線段;
(2)將線段繞點按順時針方向旋轉(zhuǎn)點的對應點為 ,畫出線段
(3)填空:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,以A為圓心,AD為半徑的弧交AB的延長線于點E,連接BD,若AD=2AB=4,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=-2x+mx+n經(jīng)過點A(0,2),B(3,-4).
(1)求該拋物線的函數(shù)表達式及對稱軸;
(2)設點B關(guān)于原點的對稱點為C,點D是拋物線對稱軸上一動點,記拋物線在A,B之間的部分為圖象G(包含A,B兩點),如果直線CD與圖象G有兩個公共點,結(jié)合函數(shù)的圖象,求點D縱坐標t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】海鮮門市的某種海鮮食材,成本為10元/千克,每天的進貨量p(千克)與銷售價格x(元/千克)滿足函數(shù)關(guān)系式,從市場反饋的信息發(fā)現(xiàn),該海鮮食材每天的市場需求量q(千克)與銷售價格x(元/千克)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
銷售價格x(元/千克) | 10 | 12 | … | 30 |
市場需求量q(千克) | 30 | 28 | … | 10 |
(已知按物價部門規(guī)定銷售價格x不低于10元/千克且不高于30元/千克)
(1)請寫出q與x的函數(shù)關(guān)系式:___________________________;
(2)當每天的進貨量小于或等于市場需求量時,這種海鮮食材能全部售出,而當每天的進貨量大于市場需求量時,只能售出符合市場需求量的海鮮食材,剩余的海鮮食材由于保質(zhì)期短而只能廢棄.
①求出每天獲得的利潤y(元)與銷售價格x的函數(shù)關(guān)系式;
②為了避免浪費,每天要確保這種海鮮食材能全部售出,求銷售價格為多少元時,每天獲得的利潤(元)最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,BD是角平分線,以點D為圓心,DA為半徑的⊙D與AC相交于點E
(1)求證:BC是⊙D的切線;
(2)若AB=5,BC=13,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)
如圖,臺風中心位于點P,并沿東北方向PQ移動,已知臺風移動的速度為30千米/時,受影響區(qū)域的半徑為200千米,B市位于點P的北偏東75°方向上,距離點P 320千米處.
(1) 說明本次臺風會影響B市;
(2)求這次臺風影響B市的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(1,0),B(2,0),C(0,﹣2),直線x=m(m>2)與x軸交于點D.
(1)求二次函數(shù)的解析式;
(2)在直線x=m(m>2)上有一點E(點E在第四象限),使得E、D、B為頂點的三角形與以A、O、C為頂點的三角形相似,求E點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出F點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠DAB=60°,AB=5,BC=3,點P從點D出發(fā),沿DC,CB向終點B勻速運動.設點P所走過的路程為x,點P所經(jīng)過的線段與AD,AP所圍成的圖形的面積為y,y隨x的變化而變化.在下列圖象中,能正確反映y與x的函數(shù)關(guān)系的是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com