【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形ABCD的邊ABy軸正半軸上,頂點(diǎn)A的坐標(biāo)為(0,2),設(shè)頂點(diǎn)C的坐標(biāo)為(ab).

1)頂點(diǎn)B的坐標(biāo)為  ,頂點(diǎn)D的坐標(biāo)為  (用ab表示);

2)如果將一個(gè)點(diǎn)的橫坐標(biāo)作為x的值,縱坐標(biāo)作為y的值,代入方程2x+3y12成立,就說這個(gè)點(diǎn)的坐標(biāo)是方程2x+3y12的解.已知頂點(diǎn)BD的坐標(biāo)都是方程2x+3y12的解,求ab的值;

3)在(2)的條件下,平移長(zhǎng)方形ABCD,使點(diǎn)B移動(dòng)到點(diǎn)D,得到新的長(zhǎng)方形EDFG,

這次平移可以看成是先將長(zhǎng)方形ABCD向右平移  個(gè)單位長(zhǎng)度,再向下平移  個(gè)單位長(zhǎng)度的兩次平移;

若點(diǎn)Pmn)是對(duì)角線BD上的一點(diǎn),且點(diǎn)P的坐標(biāo)是方程2x+3y12的解,試說明平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)也是方程2x+3y12的解.

【答案】1)(0,b),(a2);(2;(33,2;P′的坐標(biāo)也是方程2x+3y12的解.

【解析】

1)由題意,結(jié)合長(zhǎng)方形的性質(zhì)可得點(diǎn)B和點(diǎn)D的坐標(biāo);

2)因?yàn)辄c(diǎn)BD的坐標(biāo)都是方程2x+3y12的解,則將B、D兩點(diǎn)坐標(biāo)帶入方程2x+3y12,得到方程組,求解即可得到答案.

3)①本題考查平移,利用平移的性質(zhì)可以得到答案;

②將點(diǎn)P的坐標(biāo)和P的坐標(biāo)代入方程2x+3y12,若兩者相等,即可證明.

1)由A的坐標(biāo)為(0,2),C的坐標(biāo)為(a,b),以及長(zhǎng)方形ABCD的性質(zhì)可知,

AB=b,AD=a,B0b),Da,2),

故答案為(0b),(a,2);

2)∵頂點(diǎn)BD的坐標(biāo)都是方程2x+3y12的解,

解得

3)在(2)的條件下,平移長(zhǎng)方形ABCD,使點(diǎn)B移動(dòng)到點(diǎn)D,得到新的長(zhǎng)方形EDFG

①這次平移可以看成是先將長(zhǎng)方形ABCD向右平移3個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度的兩次平移;

故答案為32;

②點(diǎn)Pm,n)平移后的坐標(biāo)為(m+3n2),

∵點(diǎn)P的坐標(biāo)是方程2x+3y12的解,

2m+3n12,

P的坐標(biāo)代入方程2x+3y12, 2m+3+3n2)=2m+3n12,

P的坐標(biāo)也是方程2x+3y12的解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某民營(yíng)企業(yè)準(zhǔn)備用14000元從外地購(gòu)進(jìn)AB兩種商品共600件,其中A種商品的成本價(jià)為20元,B種商品的成本價(jià)為30元.

(1)該民營(yíng)企業(yè)從外地購(gòu)得A、B兩種商品各多少件?

(2)該民營(yíng)企業(yè)計(jì)劃租用甲、乙兩種貨車共6輛,一次性將AB兩種商品運(yùn)往某城市,已知每輛甲種貨車最多可裝A種商品110件和B種商品20件;每輛乙種貨車最多可裝A種商品30件和B種商品90件,問安排甲、乙兩種貨車有幾種方案?請(qǐng)你設(shè)計(jì)出具體的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,﹣1),圖象與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)拋物線對(duì)稱軸與直線BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;

(3)點(diǎn)E為直線BC上的任意一點(diǎn),過點(diǎn)Ex軸的垂線與拋物線交于點(diǎn)F,問是否存在點(diǎn)E使△DEF為直角三角形?若存在,求出點(diǎn)E坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC外作兩個(gè)大小不同的等腰直角三角形,其中∠DAB=CAE=90°,AB=ADAC=AE。連結(jié)DC、BE交于F點(diǎn)。

1)求證:△DAC≌△BAE;

2)求證:DC⊥BE;

3)求證:∠DFA=EFA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組

請(qǐng)結(jié)合題意填空,完成本題的解答。

I)解不等式①,得________________

(Ⅱ)解不等式②,得:_____________________

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái):

IV)原不等式組的解集為___________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在綜合實(shí)踐活動(dòng)中,同學(xué)們制作了兩塊直角三角形硬紙板,一塊含有30°角,一塊含有45°角,并且有一條直角邊是相等的.現(xiàn)將含45°角的直角三角形硬紙板重疊放在含30°角的直角三角形硬紙板上,讓它們的直角完全重合.如圖2,若相等的直角邊AC長(zhǎng)為12cm,求另一條直角邊沒有重疊部分BD的長(zhǎng)(結(jié)果用根號(hào)表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時(shí),特快車的速度為150千米/小時(shí),甲乙兩地之間的距離為1000千米,兩車同時(shí)出發(fā),則圖中折線大致表示兩車之間的距離y(千米)與快車行駛時(shí)間t(小時(shí))之間的函數(shù)圖象是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接2019年中考,某中學(xué)對(duì)全校九年級(jí)學(xué)生進(jìn)行了一次數(shù)學(xué)模擬測(cè)試,并隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī)作為樣本進(jìn)行分析,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中提供的信息解答下列問題

1)在這次調(diào)研中,一共抽取了多少名學(xué)生?

2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該中學(xué)九年級(jí)共有750名學(xué)生參加了這次數(shù)學(xué)模擬測(cè)試,請(qǐng)你估計(jì)該中學(xué)九年級(jí)有多少名學(xué)生的數(shù)學(xué)模擬成績(jī)可以達(dá)到良好及良好以上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為半圓O的直徑,C為BA延長(zhǎng)線上一點(diǎn),CD切半圓O于點(diǎn)D。連結(jié)OD,作BE⊥CD于點(diǎn)E,交半圓O于點(diǎn)F。已知CE=12,BE=9,

(1)求證:△COD∽△CBE;

(2)求半圓O的半徑的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案