【題目】如圖,在△ABC外作兩個大小不同的等腰直角三角形,其中∠DAB=∠CAE=90°,AB=AD,AC=AE。連結(jié)DC、BE交于F點。
(1)求證:△DAC≌△BAE;
(2)求證:DC⊥BE;
(3)求證:∠DFA=∠EFA.
【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析.
【解析】
(1)由題意可得AD=AB,AC=AE,由∠DAB=∠CAE=90°,可得到∠DAC=∠BAE,從而可證△DAC≌△BAE;
(2)由(1)可得∠ACD=∠AEB,再利用直角三角形的性質(zhì)及等量代換即可得到結(jié)論;
(3)作AM⊥DC于M,AN⊥BE于N,利用全等三角形的面積相等及角平分線的判定即可證得結(jié)論.
證明:(1)∵ ,
∴,
即,
又∵,AC=AE,
∴△DAC≌△BAE;
(2)∵△DAC≌△BAE,
∴∠ACD=∠AEB,
∵ ,
,
∴,
∴,
∴;
(3)作于,于,
∵≌
∴,,
∴,
∴,
∴是的平分線,
即.
故答案為:(1)證明見解析;(2)證明見解析;(3)證明見解析.
科目:初中數(shù)學 來源: 題型:
【題目】近年來,《政府工作報告》中不斷提出了很多新的詞匯,為了解學生們對新詞匯的關注度,某數(shù)學興趣小組選取其中的:“互聯(lián)網(wǎng)+政務服務”,:“工匠精神”,:“光網(wǎng)城市”,:“大眾旅游時代”四個熱詞在全校學生中進行了抽樣調(diào)查,要求被調(diào)查的每位同學只能從中選擇一個我最關注的熱詞,根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖:請根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調(diào)查了多少名同學?
(2)求出統(tǒng)計圖中,的值;
(3)扇形統(tǒng)計圖中,熱詞、所在扇形統(tǒng)計圖的圓心角分別是多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖,在△ABC中,AB=AC,D為BC上一點,∠B=30°,連接AD.
(1)若∠BAD=45°,求證:△ACD為等腰三角形;
(2)若△ACD為直角三角形,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人共同計算一道整式乘法:(2x+a)(3x+b),由于甲抄錯了第一個多項式中a的符號,得到的結(jié)果為6x2+11x-10;由于乙漏抄了第二個多項式中的x的系數(shù),得到的結(jié)果為2x2-9x+10.請你計算出a,b的值各是多少,并寫出這道整式乘法的正確結(jié)果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,四邊形ABCD中,AC⊥BD于點O,AO=CO=8,BO=DO=6,點P為線段AC上的一個動點。
⑴ 填空:AD=CD=_____ .
⑵ 過點P分別作PM⊥AD于M點,作PH⊥DC于H點.連結(jié)PB,在點P運動過程中,PM+PH+PB的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,A村和B村在一條大河CD的同側(cè),它們到河岸的距離AC、BD分別為1千米和4千米,又知道CD的長為4千米.
(1)現(xiàn)要在河岸CD上建一水廠向兩村輸送自來水.有兩種方案備選
方案1:水廠建在C點,修自來水管道到A村,再到B村(即AC+AB).(如圖2)
方案2:作A點關于直線CD的對稱點A',連接A'B交CD于M點,水廠建在M點處,分別向兩村修管道AM和BM.(即AM+BM)(如圖3)
從節(jié)約建設資金方面考慮,將選擇管道總長度較短的方案進行施工,請利用已有條件分別進行計算,判斷哪種方案更合適.
(2)有一艘快艇Q從這條河中駛過,當快艇Q在CD中間,DQ為多少時?△ABQ為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,長方形ABCD的邊AB在y軸正半軸上,頂點A的坐標為(0,2),設頂點C的坐標為(a,b).
(1)頂點B的坐標為 ,頂點D的坐標為 (用a或b表示);
(2)如果將一個點的橫坐標作為x的值,縱坐標作為y的值,代入方程2x+3y=12成立,就說這個點的坐標是方程2x+3y=12的解.已知頂點B和D的坐標都是方程2x+3y=12的解,求a,b的值;
(3)在(2)的條件下,平移長方形ABCD,使點B移動到點D,得到新的長方形EDFG,
①這次平移可以看成是先將長方形ABCD向右平移 個單位長度,再向下平移 個單位長度的兩次平移;
②若點P(m,n)是對角線BD上的一點,且點P的坐標是方程2x+3y=12的解,試說明平移后點P的對應點P′的坐標也是方程2x+3y=12的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從廣州去某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王剪了兩張直角三角形紙片,進行了如下的操作:
(1)如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE,若AC=6cm,BC=8cm,求CD的長.
(2)如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=6cm,BC=8cm,求CD的長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com