【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對1235歲的網(wǎng)癮人群進(jìn)行了簡單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.

請根據(jù)圖中的信息,回答下列問題:

1)這次抽樣調(diào)查中共調(diào)查了   人,并請補(bǔ)全條形統(tǒng)計圖;

2)扇形統(tǒng)計圖中1823歲部分的圓心角的度數(shù)是   度;

3)據(jù)報道,目前我國1235網(wǎng)癮人數(shù)約為2000萬,請估計其中1217歲的人數(shù).

【答案】11500,見解析;(2108°;(3400萬人

【解析】

1)根據(jù)3035歲的人數(shù)除以所占的百分比,可得調(diào)查的人數(shù),由各年齡段的人數(shù)之和等于總?cè)藬?shù)求得1217歲人數(shù)可補(bǔ)全條形圖;

2)根據(jù)1823歲的人數(shù)除以抽查的人數(shù)乘以360°,可得答案;

3)根據(jù)總?cè)藬?shù)乘以1217歲的人數(shù)所占的百分比,可得答案.

解:(1)這次抽樣調(diào)查中調(diào)查的總?cè)藬?shù)為330÷22%1500,

1217歲的人數(shù)為1500﹣(450+420+330)=300(人),

補(bǔ)全條形圖如下:

2)扇形統(tǒng)計圖中1823歲部分的圓心角的度數(shù)是360°×108°,

故答案為:108;

32000×400(萬人),

答:估計其中1217歲的人數(shù)為400萬人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】你記得父母的生日嗎?這是我校九年級開展感恩主題活動設(shè)置的問題,有以下四個選項:A.父母生日都記得;B.只記得母親生日;C.只記得父親生日;D.父母生日都不記得.在隨機(jī)調(diào)查了(1)班、(2)班各50名學(xué)生后,繪制出如圖所示的統(tǒng)計圖.

1)據(jù)此推算,若九年級共1000名學(xué)生,其中父母生日都不記得的學(xué)生有多少名?

2)若兩個班中只記得母親生日的學(xué)生占22%,則(2)班只記得母親生日的學(xué)生所占百分比是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩塊直角三角板的直角頂點(diǎn)O重合在一起,若∠BOCAOD,則∠BOC的度數(shù)為( 。

A.22.5°B.30°C.45°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點(diǎn)A(1,4),點(diǎn)B(m,-1),

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出不等式x+b>的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將九個數(shù)填在3×333列)的方格中,如果滿足每個橫行、每個豎列和每條對角線上的三個數(shù)之和都相等,這樣的圖稱為廣義的三階幻方,如圖1就是一個滿足條件的廣義三階幻方.2、圖3的廣義三階幻方中分別給出了三個數(shù).請直接將圖2、圖3的其余6個數(shù)全填上;

(提示:三階幻方的幻和=中心數(shù)字×3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解答問題:如果一個四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱這個四位數(shù)依賴數(shù),例如,自然數(shù)2135,其中32×21,52×2+1,所以2135依賴數(shù)

1)請直接寫出最小的四位依賴數(shù);

2)若四位依賴數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結(jié)果除以73,這樣的數(shù)叫做特色數(shù),求所有特色數(shù).

3)已知一個大于1的正整數(shù)m可以分解成mpq+n4的形式(p≤qn≤b,pq,n均為正整數(shù)),在m的所有表示結(jié)果中,當(dāng)nqnp取得最小時,稱“mpq+n4m最小分解,此時規(guī)定:Fm)=,例:201×4+242×2+241×19+14,因為1×191×12×42×12×22×2,所以F20)=1,求所有特色數(shù)Fm)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于點(diǎn)A(1,0)和B(4,0)

(1)求拋物線的解析式;

(2)若拋物線的對稱軸交x軸于點(diǎn)E,點(diǎn)F是位于x軸上方對稱軸上一點(diǎn),F(xiàn)Cx軸,與對稱軸右側(cè)的拋物線交于點(diǎn)C,且四邊形OECF是平行四邊形,求點(diǎn)C的坐標(biāo);

(3)在(2)的條件下,拋物線的對稱軸上是否存在點(diǎn)P,使OCP是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)分別是上的中點(diǎn),連接并延長至點(diǎn),使,連接.

(1)證明:;

(2)若,AC=2,連接BF,求BF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…

(1)請根據(jù)你發(fā)現(xiàn)的規(guī)律填空:6×8+1=(   2

(2)用含n的等式表示上面的規(guī)律:   ;

(3)用找到的規(guī)律解決下面的問題:

計算:(1+)(1+)(1+)(1+)…(1+

查看答案和解析>>

同步練習(xí)冊答案