【題目】如圖,拋物線與x軸交于點(diǎn)A(1,0)和B(4,0)

(1)求拋物線的解析式;

(2)若拋物線的對稱軸交x軸于點(diǎn)E,點(diǎn)F是位于x軸上方對稱軸上一點(diǎn),F(xiàn)Cx軸,與對稱軸右側(cè)的拋物線交于點(diǎn)C,且四邊形OECF是平行四邊形,求點(diǎn)C的坐標(biāo);

(3)在(2)的條件下,拋物線的對稱軸上是否存在點(diǎn)P,使OCP是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由

【答案】(1) 拋物線的解析式為y= x2-x+2;(2) 點(diǎn)C的坐標(biāo)為(5,2);(3) 存在點(diǎn)P(,-)或()或(,)或(,

【解析

試題分析:(1)把點(diǎn)A、B的坐標(biāo)代入函數(shù)解析式,解方程組求出a、b的值,即可得解;

(2)根據(jù)拋物線解析式求出對稱軸,再根據(jù)平行四邊形的對角線互相平分求出點(diǎn)C的橫坐標(biāo),然后代入函數(shù)解析式計(jì)算求出縱坐標(biāo),即可得解;

(3)設(shè)AC、EF的交點(diǎn)為D,根據(jù)點(diǎn)C的坐標(biāo)寫出點(diǎn)D的坐標(biāo),然后分點(diǎn)O是直角頂點(diǎn)時(shí),求出OED和PEO相似,根據(jù)相似三角形對應(yīng)邊成比例求出PE,然后寫出點(diǎn)P的坐標(biāo)即可;點(diǎn)C是直角頂點(diǎn)時(shí),同理求出PF,再求出PE,然后寫出點(diǎn)P的坐標(biāo)即可;點(diǎn)P是直角頂點(diǎn)時(shí),利用勾股定理列式求出OC,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得PD=OC,再分點(diǎn)P在OC的上方與下方兩種情況寫出點(diǎn)P的坐標(biāo)即可

試題解析:(1)把點(diǎn)A(1,0)和B(4,0)代入y=ax2+bx+2得,

,

解得,

所以,拋物線的解析式為y=x2-x+2;

(2)拋物線的對稱軸為直線x=,

四邊形OECF是平行四邊形,

點(diǎn)C的橫坐標(biāo)是×2=5,

點(diǎn)C在拋物線上,

y=×52-×5+2=2,

點(diǎn)C的坐標(biāo)為(5,2);

(3)設(shè)OC與EF的交點(diǎn)為D,

點(diǎn)C的坐標(biāo)為(5,2),

點(diǎn)D的坐標(biāo)為(,1),

點(diǎn)O是直角頂點(diǎn)時(shí),易得OED∽△PEO,

,

解得PE=,

所以,點(diǎn)P的坐標(biāo)為(,-);

點(diǎn)C是直角頂點(diǎn)時(shí),同理求出PF=,

所以,PE=+2=

所以,點(diǎn)P的坐標(biāo)為(,);

點(diǎn)P是直角頂點(diǎn)時(shí),由勾股定理得,OC=,

PD是OC邊上的中線,

PD=OC=,

若點(diǎn)P在OC上方,則PE=PD+DE=+1,

此時(shí),點(diǎn)P的坐標(biāo)為(,),

若點(diǎn)P在OC的下方,則PE=PD-DE=-1,

此時(shí),點(diǎn)P的坐標(biāo)為(,),

綜上所述,拋物線的對稱軸上存在點(diǎn)P(,-)或(,或(,)或(,,使OCP是直角三角形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ACBC于C,BC=a,CA=b,AB=c,下列圖形中O與ABC的某兩條邊或三邊所在的直線相切,則O的半徑為的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,今年云南省面向縣級及農(nóng)村地區(qū)推廣,為相應(yīng)號召,某商場計(jì)劃用3800元購進(jìn)節(jié)能燈120只,這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

1)求甲、乙兩種節(jié)能燈各進(jìn)多少只?

2)全部售完120只節(jié)能燈后,該商場獲利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會(huì)各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對1235歲的網(wǎng)癮人群進(jìn)行了簡單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.

請根據(jù)圖中的信息,回答下列問題:

1)這次抽樣調(diào)查中共調(diào)查了   人,并請補(bǔ)全條形統(tǒng)計(jì)圖;

2)扇形統(tǒng)計(jì)圖中1823歲部分的圓心角的度數(shù)是   度;

3)據(jù)報(bào)道,目前我國1235網(wǎng)癮人數(shù)約為2000萬,請估計(jì)其中1217歲的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,邊長為2的正方形中,是對角線上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)、不重合),過點(diǎn),交射線于點(diǎn),過點(diǎn),垂足為點(diǎn).

1)求證:

2)在點(diǎn)的運(yùn)動(dòng)過程中,的長度是否發(fā)生變化?若不變,試求出這個(gè)不變的值,寫出解答過程:若變化,試說明理由:

3)在點(diǎn)的運(yùn)動(dòng)過程中,能否為等腰三角形?如果能,直接寫出此時(shí)的長;如果不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個(gè),每墊球到位1個(gè)記1

(1)寫出運(yùn)動(dòng)員甲測試成績的眾數(shù)為_________;運(yùn)動(dòng)員乙測試成績的中位數(shù)為_________;運(yùn)動(dòng)員丙測試成績的平均數(shù)為_________;

(2)經(jīng)計(jì)算三人成績的方差分別為S2=0.8、S2=0.4、S2=0.8,請綜合分析在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么?

(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結(jié)束時(shí)球回到甲手中的概率是多少?(用樹狀圖或列表法解答

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線ly=﹣x2+bx+cb,c為常數(shù)),其頂點(diǎn)E在正方形ABCD內(nèi)或邊上,已知點(diǎn)A(1,2),B(1,1),C(2,1).

(1)直接寫出點(diǎn)D的坐標(biāo)_____________;

(2)l經(jīng)過點(diǎn)B,C,l的解析式

(3)設(shè)lx軸交于點(diǎn)M,N當(dāng)l的頂點(diǎn)E與點(diǎn)D重合時(shí),求線段MN的值;當(dāng)頂點(diǎn)E在正方形ABCD內(nèi)或邊上時(shí),直接寫出線段MN的取值范圍;

(4)l經(jīng)過正方形ABCD的兩個(gè)頂點(diǎn)直接寫出所有符合條件的c的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列結(jié)論:

(1)c<0;

(2)b>0;

(3)4a+2b+c>0;

(4)(a+c)2<b2

其中不正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面的點(diǎn)陣圖和相應(yīng)的等式,探究其中的規(guī)律:

(1)認(rèn)真觀察,并在④后面的橫線上寫出相應(yīng)的等式.

1=1 1+2==3 1+2+3==6    

(2)結(jié)合(1)觀察下列點(diǎn)陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.

1=121+3=223+6=326+10=42   

(3)通過猜想,寫出(2)中與第n個(gè)點(diǎn)陣相對應(yīng)的等式   

【答案】(1)10;(2)見解析;(3)

【解析】試題分析:(1)根據(jù)①②③觀察會(huì)發(fā)現(xiàn)第四個(gè)式子的等號的左邊是1+2+3+4,右邊分子上是(1+4)×4,從而得到規(guī)律;

(2)通過觀察發(fā)現(xiàn)左邊是10+15,右邊是255的平方;

(3)過對一些特殊式子進(jìn)行整理、變形、觀察、比較,歸納出一般規(guī)律.

試題解析:(1)根據(jù)題中所給出的規(guī)律可知:1+2+3+4==10;

(2)由圖示可知點(diǎn)的總數(shù)是5×5=25,所以10+15=52

(3)由(1)(2)可知

點(diǎn)睛:主要考查了學(xué)生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后用一個(gè)統(tǒng)一的式子表示出變化規(guī)律是此類題目中的難點(diǎn).

型】解答
結(jié)束】
19

【題目】如圖,用細(xì)線懸掛一個(gè)小球,小球在豎直平面內(nèi)的A、C兩點(diǎn)間來回?cái)[動(dòng),A點(diǎn)與地面距離AN=14cm,小球在最低點(diǎn)B時(shí),與地面距離BM=5cm,AOB=66°,求細(xì)線OB的長度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)

查看答案和解析>>

同步練習(xí)冊答案