【題目】如圖,拋物線l:y=﹣x2+bx+c(b,c為常數(shù)),其頂點(diǎn)E在正方形ABCD內(nèi)或邊上,已知點(diǎn)A(1,2),B(1,1),C(2,1).
(1)直接寫(xiě)出點(diǎn)D的坐標(biāo)_____________;
(2)若l經(jīng)過(guò)點(diǎn)B,C,求l的解析式;
(3)設(shè)l與x軸交于點(diǎn)M,N,當(dāng)l的頂點(diǎn)E與點(diǎn)D重合時(shí),求線段MN的值;當(dāng)頂點(diǎn)E在正方形ABCD內(nèi)或邊上時(shí),直接寫(xiě)出線段MN的取值范圍;
(4)若l經(jīng)過(guò)正方形ABCD的兩個(gè)頂點(diǎn),直接寫(xiě)出所有符合條件的c的值.
【答案】(1)D點(diǎn)的坐標(biāo)為(2,2);(2)y=﹣x2+3x﹣1;(3)2≤MN≤;(4)所有符合條件的c的值為﹣1,1,﹣2.
【解析】試題分析:(1)根據(jù)正方形的性質(zhì),可得D點(diǎn)的坐標(biāo);
(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(3)根據(jù)頂點(diǎn)橫坐標(biāo)縱坐標(biāo)越大,與x軸交點(diǎn)的線段越長(zhǎng),根據(jù)頂點(diǎn)橫坐標(biāo)縱坐標(biāo)越小,與x軸交點(diǎn)的線段越短,可得答案;
(4)根據(jù)待定系數(shù)法,可得c的值,要分類(lèi)討論,以防遺漏.
試題解析:解:(1)由正方形ABCD內(nèi)或邊上,已知點(diǎn)A(1,2),B(1,1),C(2,1),得D點(diǎn)的橫坐標(biāo)等于C點(diǎn)的橫坐標(biāo),即D點(diǎn)的橫坐標(biāo)為2,D點(diǎn)的縱坐標(biāo)等于A點(diǎn)的縱坐標(biāo),即D點(diǎn)的縱坐標(biāo)為2,D點(diǎn)的坐標(biāo)為(2,2);
(2)把B(1,1)、C(2,1)代入解析式可得:,解得:
所以二次函數(shù)的解析式為y=﹣x2+3x﹣1;
(3)由此時(shí)頂點(diǎn)E的坐標(biāo)為(2,2),得:拋物線解析式為y=﹣(x﹣2)2+2
把y=0代入得:﹣(x﹣2)2+2=0
解得:x1=2﹣,x2=2+,即N(2+,0),M(2﹣,0),所以MN=2+﹣(2﹣)=2.
點(diǎn)E的坐標(biāo)為B(1,1),得:拋物線解析式為y=﹣(x﹣1)2+1
把y=0代入得:﹣(x﹣1)2+1=0
解得:x1=0,x2=2,即N(2,0),M(0,0),所以MN=2﹣0=2.
點(diǎn)E在線段AD上時(shí),MN最大,點(diǎn)E在線段BC上時(shí),MN最小;
當(dāng)頂點(diǎn)E在正方形ABCD內(nèi)或邊上時(shí),2≤MN≤2;
(4)當(dāng)l經(jīng)過(guò)點(diǎn)B,C時(shí),二次函數(shù)的解析式為y=﹣x2+3x﹣1,c=﹣1;
當(dāng)l經(jīng)過(guò)點(diǎn)A、D時(shí),E點(diǎn)不在正方形ABCD內(nèi)或邊上,故排除;
當(dāng)l經(jīng)過(guò)點(diǎn)B、D時(shí),,解得:,即c=﹣2;
當(dāng)l經(jīng)過(guò)點(diǎn)A、C時(shí),,解得,即c=1;
綜上所述:l經(jīng)過(guò)正方形ABCD的兩個(gè)頂點(diǎn),所有符合條件的c的值為﹣1,1,﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,過(guò)點(diǎn)B作AC的垂線交線段AD于E,垂足為F.若△CDF為等腰三角形,則 =_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將九個(gè)數(shù)填在3×3(3行3列)的方格中,如果滿足每個(gè)橫行、每個(gè)豎列和每條對(duì)角線上的三個(gè)數(shù)之和都相等,這樣的圖稱(chēng)為“廣義的三階幻方”,如圖1就是一個(gè)滿足條件的廣義三階幻方.圖2、圖3的廣義三階幻方中分別給出了三個(gè)數(shù).請(qǐng)直接將圖2、圖3的其余6個(gè)數(shù)全填上;
(提示:三階幻方的幻和=中心數(shù)字×3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A(1,0)和B(4,0).
(1)求拋物線的解析式;
(2)若拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)E,點(diǎn)F是位于x軸上方對(duì)稱(chēng)軸上一點(diǎn),F(xiàn)C∥x軸,與對(duì)稱(chēng)軸右側(cè)的拋物線交于點(diǎn)C,且四邊形OECF是平行四邊形,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△OCP是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校準(zhǔn)備組織師生共60人,從甲地乘動(dòng)車(chē)前往乙地參加夏令營(yíng)活動(dòng),動(dòng)車(chē)票價(jià)格如表所示:(教師按成人票價(jià)購(gòu)買(mǎi),學(xué)生按學(xué)生票價(jià)購(gòu)買(mǎi)).
若師生均購(gòu)買(mǎi)二等座票,則共需1020元.
(1)參加活動(dòng)的教師和學(xué)生各有多少人?
(2)由于部分教師需提早前往做準(zhǔn)備工作,這部分教師均購(gòu)買(mǎi)一等座票,后續(xù)前往的教師和學(xué)生均購(gòu)買(mǎi)二等座票.設(shè)提早前往的教師有x人,購(gòu)買(mǎi)一、二等座票全部費(fèi)用為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②若購(gòu)買(mǎi)一、二等座票全部費(fèi)用不多于1030元,則提早前往的教師最多只能多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)分別是上的中點(diǎn),連接并延長(zhǎng)至點(diǎn),使,連接.
(1)證明:;
(2)若,AC=2,連接BF,求BF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠C=90°,∠BAC=30°,點(diǎn)D為邊BC上的點(diǎn),連接AD,∠BAD=α,點(diǎn)D關(guān)于AB的對(duì)稱(chēng)點(diǎn)為E,點(diǎn)E關(guān)于AC的對(duì)稱(chēng)點(diǎn)為G,線段EG交AB于點(diǎn)F,連接AE,DE,DG,AG.
(1)依題意補(bǔ)全圖形;
(2)求∠AGE的度數(shù)(用含α的式子表示);
(3)用等式表示線段EG與EF,AF之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)400元,領(lǐng)帶每條定價(jià)50元.廠方在開(kāi)展促銷(xiāo)活動(dòng)期間,向客戶提供兩種優(yōu)惠方案:
方案①:買(mǎi)一套西裝送一條領(lǐng)帶;
方案②:西裝和領(lǐng)帶都按定價(jià)的90%付款.
現(xiàn)某客戶要到該服裝廠購(gòu)買(mǎi)西裝20套,領(lǐng)帶x條(x>20)
(1)若該客戶按方案①購(gòu)買(mǎi),需付款 元(用含x的代數(shù)式表示);
若該客戶按方案②購(gòu)買(mǎi),需付款 元(用含x的代數(shù)式表示);
(2)若x=30,通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買(mǎi)較為合算?
(3)若兩種優(yōu)惠方案可同時(shí)使用,當(dāng)x=30時(shí),你能給出一種更為省錢(qián)的購(gòu)買(mǎi)方案嗎?試寫(xiě)出你的購(gòu)買(mǎi)方法并計(jì)算出此種方案的付款金額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E、F分別為邊BC、CD的中點(diǎn),AF、DE相交于點(diǎn)G,則可得結(jié)論:①AF=DE,②AF⊥DE(不須證明).
(1)如圖②,若點(diǎn)E、F不是正方形ABCD的邊BC、CD的中點(diǎn),但滿足CE=DF,則上面的結(jié)論①、②是否仍然成立;(請(qǐng)直接回答“成立”或“不成立”)
(2)如圖③,若點(diǎn)E、F分別在正方形ABCD的邊CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CE=DF,此時(shí)上面的結(jié)論①、②是否仍然成立?若成立,請(qǐng)寫(xiě)出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由.
(3)如圖④,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M、N、P、Q分別為AE、EF、FD、AD的中點(diǎn),請(qǐng)先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫(xiě)出證明過(guò)程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com