【題目】已知:如圖,B=∠CADB=∠DEC,AB=DC.

1)求證:ADE 為等腰三角形.

2)若∠B=60°,求證:△ADE 為等邊三角形.

【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析

【解析】

1)由題意證的ABD DCE (SAS ),即可得出AD=DE,即ADE 為等腰三角形;

2)通過(guò)(1)里面證的全等,得出∠BDA+∠BAD=∠BDA+∠CDE=120°,進(jìn)而得出∠ADE=60°,ADE 為等腰三角形即可證的ADE 為等邊三角形.

證明: ABD DCE 中,

ABD DCE (SAS )

DA DE

ADE 為等腰三角形

ABD DCE

BAD CDE

B 60

BAD ADB 120

CDE ADB 120

ADE 60

ADE 為等腰三角形

ADE 為等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實(shí)數(shù)根.

(1)求k的取值范圍;

(2)若此方程的兩實(shí)數(shù)根x1,x2滿足x12+x22=11,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次科技知識(shí)競(jìng)賽中,兩組學(xué)生成績(jī)統(tǒng)計(jì)如下表,通過(guò)計(jì)算可知兩組的方差為 , .下列說(shuō)法:

①兩組的平均數(shù)相同;

②甲組學(xué)生成績(jī)比乙組學(xué)生成績(jī)穩(wěn)定;

③甲組成績(jī)的眾數(shù)>乙組成績(jī)的眾數(shù);

④兩組成績(jī)的中位數(shù)均為80,但成績(jī)≥80的人數(shù)甲組比乙組多,從中位數(shù)來(lái)看,甲組成績(jī)總體比乙組好;⑤成績(jī)高于或等于90分的人數(shù)乙組比甲組多,高分段乙組成績(jī)比甲組好.其中正確的共有(

分?jǐn)?shù)

50

60

70

80

90

100


數(shù)

甲組

2

5

10

13

14

6

乙組

4

4

16

2

12

12

A. 2種 B. 3種 C. 4種 D. 5種

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC為銳角,點(diǎn)D為直線BC上一動(dòng)點(diǎn),以AD為直角邊且在AD的右側(cè)作等腰直角三角形ADE,∠DAE90°,ADAE

1)如果ABAC,∠BAC90°.①當(dāng)點(diǎn)D在線段BC上時(shí),如圖1,線段CE、BD的位置關(guān)系為___________,數(shù)量關(guān)系為___________

②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖2,①中的結(jié)論是否仍然成立,請(qǐng)說(shuō)明理由.

2)如圖3,如果ABAC,∠BAC90°,點(diǎn)D在線段BC上運(yùn)動(dòng)。探究:當(dāng)∠ACB多少度時(shí),CEBC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小方家住戶型呈長(zhǎng)方形,平面圖如下(單位:米),現(xiàn)準(zhǔn)備鋪設(shè)地面,三間臥室鋪設(shè)木地板,其它區(qū)城鋪設(shè)地磚.

(1)a的值.

(2)鋪設(shè)地面需要木地板和地磚各多少平方米(用含的代數(shù)式表示)?

(3)按市場(chǎng)價(jià)格,木地板單價(jià)為300/平方米,地磚單價(jià)為100/平方米,裝修公司有兩種活動(dòng)方案,如表:

活動(dòng)方案

木地板價(jià)格

地磚價(jià)格

總安裝費(fèi)

A

8

8.5

2000

B

9

8.5

免收

已知臥室2的面積是21平方米,則小方家應(yīng)選擇哪種活動(dòng),使鋪設(shè)地面的總費(fèi)用(包括材料費(fèi)及安裝費(fèi))更低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx-5(a≠0)經(jīng)過(guò)點(diǎn)A(4,-5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.

(1)求這條拋物線的表達(dá)式;

(2)連接AB、BC、CD、DA,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形 ABCD 中,AE,DF 分別是∠BAD,∠ADC 的平分線,且 AEDF 于點(diǎn) O 延長(zhǎng) DF AB 的延長(zhǎng)線于點(diǎn) M

1)求證:ABDC ;

2)若∠MBC=120°,∠BAD=108°,求∠C,∠DFE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)習(xí)小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( 。

A. 袋中裝有大小和質(zhì)地都相同的3個(gè)紅球和2個(gè)黃球,從中隨機(jī)取一個(gè),取到紅球

B. 擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點(diǎn)數(shù)是偶數(shù)

C. 先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面

D. 先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點(diǎn)數(shù)之和是7或超過(guò)9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程x2+(2k+1)x+k2+2=0有兩個(gè)實(shí)數(shù)根x1,x2.

(1)求實(shí)數(shù)k的取值范圍;

(2)x1,x2滿足|x1|+|x2|=|x1x2|-1,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案