【題目】揚(yáng)州某風(fēng)景區(qū)門票價(jià)格如圖所示,有甲、乙兩個(gè)旅行團(tuán)隊(duì),計(jì)劃在端午節(jié)期間到該景點(diǎn)游玩,兩團(tuán)隊(duì)游客人數(shù)之和為100人,若乙團(tuán)隊(duì)人數(shù)不超過40人,甲團(tuán)隊(duì)人數(shù)不超過80人,設(shè)甲團(tuán)隊(duì)人數(shù)為人,如果甲、乙兩團(tuán)隊(duì)分別購買門票,兩團(tuán)隊(duì)門票款之和為元.

1)直接寫出關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2)計(jì)算甲、乙兩團(tuán)隊(duì)聯(lián)合購票比分別購票最多可節(jié)約多少錢?

3)該景區(qū)每年11月、12月為淡季,景區(qū)決定在這兩個(gè)月實(shí)行門票打五折的優(yōu)惠(打折期間不售團(tuán)體票),以吸引大量游客,提高景區(qū)收入;景區(qū)經(jīng)過調(diào)研發(fā)現(xiàn),隨著接待游客數(shù)的增加,景區(qū)的運(yùn)營成本也隨之增加,景區(qū)運(yùn)營成本(萬元)與兩個(gè)月游客總?cè)藬?shù)(萬人)之間滿足函數(shù)關(guān)系式:;兩個(gè)月游客總?cè)藬?shù)(萬人)滿足:,且淡季每天游客數(shù)基本相同;為了獲得最大利潤,景區(qū)決定通過網(wǎng)絡(luò)預(yù)約購票的方式控制淡季每天游客數(shù),請問景區(qū)的決定是否正確?并說明理由.(利潤門票收入景區(qū)運(yùn)營成本)

【答案】1)當(dāng)時(shí),;(21800元;(3)利潤隨人數(shù)的增大而減小,故景區(qū)的決定是正確的

【解析】

(1)由乙團(tuán)隊(duì)人數(shù)不超過40人,討論的取值范圍,得到函數(shù)解析式;

(2)由(1)在甲團(tuán)隊(duì)人數(shù)不超過80人時(shí),討論的最大值與聯(lián)合購票費(fèi)用相減即可;

(3)根據(jù)題意列函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.

解:(1)由題意乙團(tuán)隊(duì)人數(shù)為人,則,

當(dāng)時(shí),;

(2)由(1)甲團(tuán)隊(duì)人數(shù)不超過80人,

,∴增大而減小,

當(dāng)時(shí),

當(dāng)兩團(tuán)隊(duì)聯(lián)合購票時(shí)購票費(fèi)用為

甲、乙兩團(tuán)隊(duì)聯(lián)合購票比分別購票最多可節(jié)約元;

(3)正確.設(shè)利潤為元,根據(jù)題意得,,

,∴拋物線的開口向下,有最大值,

,的增大而減小,

∴利潤隨人數(shù)的增大而減小,故景區(qū)的決定是正確的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖所示,點(diǎn)為矩形的中點(diǎn),在矩形的四個(gè)頂點(diǎn)處都有定位儀,可監(jiān)測運(yùn)動員的越野進(jìn)程,其中一位運(yùn)動員從點(diǎn)出發(fā),沿著的路線勻速行進(jìn),到達(dá)點(diǎn).設(shè)運(yùn)動員的運(yùn)動時(shí)間為,到監(jiān)測點(diǎn)的距離為.現(xiàn)有的函數(shù)關(guān)系的圖象大致如圖所示,則這一信息的來源是( ).

A. 監(jiān)測點(diǎn) B. 監(jiān)測點(diǎn) C. 監(jiān)測點(diǎn) D. 監(jiān)測點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,FG、AC是直徑,AB是弦,FG⊥AB,垂足為點(diǎn)P,過點(diǎn)C的直線交AB的延長線于點(diǎn)D,交GF的延長線于點(diǎn)E,已知AB=4,⊙O的半徑為

1)分別求出線段AP、CB的長;

2)如果OE=5,求證:DE⊙O的切線;

3)如果tan∠E=,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形邊長為2,、分別是、上兩動點(diǎn),且滿足,于點(diǎn)

(1)如圖1,判斷線段、的位置關(guān)系,并說明理由;

(2)在(1)的條件下,連接,直接寫出的最小值為

(3)如圖2,點(diǎn)的中點(diǎn),連接

①求證:平分;

②求線段的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A﹣1,0)、C03),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小玲家在某24層樓的頂樓,對面新建了一幢28米高的圖書館,小玲在樓頂處看圖書館樓頂處和樓底處的俯角分別是,則兩樓之間的距離是__________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為半圓內(nèi)一點(diǎn),為圓心,直徑長為,,,將繞圓心逆時(shí)針旋轉(zhuǎn)至,點(diǎn)上,則邊掃過區(qū)域(圖中陰影部分)的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)為A(﹣4,1),B(﹣2,3),C(﹣12).

1)畫出ABC關(guān)于原點(diǎn)O成中心對稱的ABC,點(diǎn)A,B,C分別是點(diǎn)A,B,C的對應(yīng)點(diǎn).

2)求過點(diǎn)B的反比例函數(shù)解析式.

3)判斷AB的中點(diǎn)P是否在(2)的函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在圓O上,BECD垂足為E,CB平分∠ABE,連接BC

1)求證:CD為⊙O的切線;

2)若cosCAB,CE,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案