【題目】在平面直角坐標(biāo)系中,M(m,n)且m、n滿足m2+2n2﹣2mn+4n+4=0,B(0,b)為y軸上一動(dòng)點(diǎn),繞B點(diǎn)將直線BM順時(shí)針旋轉(zhuǎn)45°交x軸于點(diǎn)C,過(guò)C作AC⊥BC交直線BM于點(diǎn)A(a,t).
(1)求點(diǎn)M的坐標(biāo);
(2)如圖1,在B點(diǎn)運(yùn)動(dòng)的過(guò)程中,A點(diǎn)的橫坐標(biāo)是否會(huì)發(fā)生變化?若不變,求a的值;若變化,寫出A點(diǎn)的橫坐標(biāo)a的取值范圍;
(3)如圖2,過(guò)T(a,0)作TH⊥BM(垂足H在x軸下方),在射線HB上截取HK=HT,連OK,求∠OKB的度數(shù).
【答案】(1) 點(diǎn)M的坐標(biāo)為(﹣2,﹣2);(2)不變,a=-4;(3) 45°
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)分別求出m、n,得到點(diǎn)M的坐標(biāo);
(2)過(guò)A作AT⊥x軸,MD⊥x軸于D,連接OM,CM,證明△CBO≌△ACT,根據(jù)全等三角形的性質(zhì)得到CT=BO=-b,AT=CO=t,根據(jù)等腰直角三角形的性質(zhì)得到∴M為AB中點(diǎn),根據(jù)中點(diǎn)的性質(zhì)計(jì)算,得到答案;
(3)連TM、OM,過(guò)O作ON⊥BM于N,證明△HTM≌△NMO,根據(jù)全等三角形的性質(zhì),等腰直角三角形的性質(zhì)解答即可.
(1)m2+2n2﹣2mn+4n+4=0,
m2+n2﹣2mn+n2+4n+4=0,
(m﹣n)2+(n+2)2=0,
則m﹣n=0,n+2=0,
解得,m=﹣2,n=﹣2,
∴點(diǎn)M的坐標(biāo)為(﹣2,﹣2);
(2)過(guò)A作AT⊥x軸,MD⊥x軸于D,連接OM,CM,
在Rt△ACB中,∠ABC=45°,
∴CA=CB,
∵∠ACB=90°,
∴∠ACT+∠TCB=90°,
∵∠BOC=90°,
∴∠BCO+∠TCB=90°,
∴∠ACT=∠CBO,
在△CBO和△ACT中,
,
∴△CBO≌△ACT(AAS),
∴CT=BO=﹣b,AT=CO=t,
∴a=b+t,
∵DO=DM,
∴∠DOM=45°,
∴∠MOC=135°,
∴∠MOC+∠ABC=180°,
∴O、M、B、C四點(diǎn)共圓,
∴∠CMB=∠COB=90°,
∵CA=CB,
∴M為AB中點(diǎn),
∴b+t=﹣4,
∴a=﹣4;
(3)連TM、OM,過(guò)O作ON⊥BM于N,
由(2)可知T(﹣4,0),
∴OT=4,又點(diǎn)M的坐標(biāo)為(﹣2,﹣2),
∴△TMO為等腰直角三角形,
∴MT=MO,
∵∠THM=90°,∠TMO=90°,
∴∠TMH=∠MON,
在△HTM和△NMO中,
,
∴△HTM≌△NMO(AAS),
∴HT=MN,HM=ON,
∴HK=KN,
∴KN=ON,
∴∠OKB=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△DAE≌△CFE;
(2)若AB=BC+AD,求證:BE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個(gè)條件為_______(只添加一個(gè)條件即可);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l上有一點(diǎn)P1(2,1),將點(diǎn)P1先向右平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)P2,點(diǎn)P2恰好在直線l上.
(1)求直線l所表示的一次函數(shù)的表達(dá)式;
(2)若將點(diǎn)P2先向右平移3個(gè)單位,再向上平移6個(gè)單位得到點(diǎn)P3.請(qǐng)判斷點(diǎn)P3是否在直線l上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),∠EAF=∠BAD,若DF=1,BE=5,則線段EF的長(zhǎng)為( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓內(nèi)接四邊形ABCD中,CD為△BAC的外角平分線,F為弧AD上一點(diǎn),BC=AF,延長(zhǎng)DF與BA的延長(zhǎng)線交于E.
(1)求證:AD=BD;
(2)若AC=10,AF=3,DF:FE=3:2,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明的爸爸和媽媽上山游玩,爸爸步行,媽媽乘坐纜車,相約在山頂纜車的終點(diǎn)會(huì)合.已知爸爸步行的路程是纜車所經(jīng)線路長(zhǎng)的2.5倍,媽媽在爸爸出發(fā)后50分鐘才坐上纜車,纜車的平均速度為每分鐘180米.圖中的折現(xiàn)反映了爸爸行走的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系.
(1)爸爸行走的總路程是 米,他途中休息了 分鐘;
(2)當(dāng)時(shí),與之間的函數(shù)關(guān)系式是 ;
(3)爸爸休息之后行走的速度是每分鐘 米;
(4)當(dāng)媽媽到達(dá)纜車終點(diǎn)是,爸爸離纜車終點(diǎn)的路程是 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長(zhǎng)分別是方程x2—7x+12=0的兩根(OA<0B),動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始在線段AO上以每秒l個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)求A、B兩點(diǎn)的坐標(biāo)。
(2)求當(dāng)t為何值時(shí),△APQ與△AOB相似,并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).
(3)當(dāng)t=2時(shí),在坐標(biāo)平面內(nèi),是否存在點(diǎn)M,使以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知網(wǎng)格上最小的正方形的邊長(zhǎng)為1.
(1)分別寫出A,B,C三點(diǎn)的坐標(biāo);
(2)作△ABC關(guān)于y軸的對(duì)稱圖形△A′B′C′(不寫作法),想一想:關(guān)于y軸對(duì)稱的兩個(gè)點(diǎn)之間有什么關(guān)系?
(3)求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com