【題目】畫圖并討論.
已知ΔABC,如圖所示,要求畫一個三角形,使它與ΔABC有一個公共的頂點(diǎn)C,并且與ΔABC全等。
甲同學(xué)的畫法如下:
①延長BC和AC;
②在BC的延長線上取點(diǎn)D,使CD=BC;
③在AC的延長線上取點(diǎn)E,使CE=AC;
④連接DE,得ΔEDC.
乙同學(xué)的畫法如下:
①延長AC和BC;
②在BC的延長線上取點(diǎn)M,使CM=AC;
③在AC的延長線上取點(diǎn)N,使CN=BC;
④連接MN,得ΔMNC.
究竟哪種畫法對?有如下幾種結(jié)論:
A.甲畫得對,乙畫得不對; B. 乙畫得對,甲畫得不對;
C.甲、乙畫得都對; D.甲、乙畫得都不對.
正確的結(jié)論是 .
這道題還可以按下面步驟完成:
①用量角器量出∠ACB的度數(shù);
②在∠ACB的外部畫射線CP,使∠ACP=∠ACB;
③在射線CP上取點(diǎn)D,使CD=CB;
④連接AD.
ΔADC就是所要畫的三角形.
這樣畫的結(jié)果可記作ΔABC≌ .
滿足題目要求的三角形可以畫出多少個呢?
答案是 .請你再設(shè)計一種畫法并畫出圖形.
【答案】C;ΔADC;無數(shù)個;圖形見解析
【解析】試題分析:(1)、(2)利用“SAS”可對甲、乙的畫法進(jìn)行判斷;
(3)根據(jù)“SAS”可判斷≌;
(4)以為公共邊畫三角形與全等.
試題解析:(1)、(2)對于甲的畫法,可根據(jù)“SAS”判定△ACB≌△ECD;對于乙的畫法,可根據(jù)“SAS”判定△ACB≌△MCN,所以甲、乙都畫得對;
(3)根據(jù)“SAS”可判斷△ABC≌△ADC;
(4)滿足題目要求的三角形可以畫出無數(shù)個;
(5)如圖,過C點(diǎn)作CE∥AB,截取CE=AB,連結(jié)BE,則△BCE為所作.
故答案為③,△ADC,無數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一組數(shù)據(jù)中的每一個數(shù)減去40后,所得新的一組數(shù)據(jù)的平均數(shù)是2,則原來那組數(shù)據(jù)的平均數(shù)是( 。
A. 40 B. 42 C. 38 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時,判斷四邊形BECD的形狀,并說明理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A=時,四邊形BECD是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB是⊙O的直徑,弦AD是∠BAC的平分線,過點(diǎn)D作⊙O的切線L,且AC⊥DE,垂足為點(diǎn)E.
(1)求證:AD2=AB·AE
(2)如果DE=,CE=1,請判別四邊形ACDO的形狀,并證明你的結(jié)論成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過點(diǎn)C、A、A′,求此拋物線的解析式;
(2)點(diǎn)M時第一象限內(nèi)拋物線上的一動點(diǎn),問:當(dāng)點(diǎn)M在何處時,△AMA′的面積最大?最大面積是多少?并求出此時M的坐標(biāo);
(3)若P為拋物線上一動點(diǎn),N為x軸上的一動點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時,求點(diǎn)P的坐標(biāo),當(dāng)這個平行四邊形為矩形時,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(﹣5,3)在平面直角坐標(biāo)系中所在的位置是( 。
A.第一象限B.第二象限C.第三象限D.第四象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com