【題目】如圖坐標系中,O(0,0),A(3,3),B(6,0),將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE=,則AC:AD的值是( )
A.1:2B.2:3C.6:7D.7:8
【答案】B
【解析】
過A作AF⊥OB于F,如圖所示:根據(jù)已知條件得到AF=3,OF=3,OB=6,求得∠AOB=60°,推出△AOB是等邊三角形,得到∠AOB=∠ABO=60°,根據(jù)折疊的性質(zhì)得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根據(jù)相似三角形的性質(zhì)得到BE=OB﹣OE=6﹣=,設(shè)CE=a,則CA=a,CO=6﹣a,ED=b,則AD=b,DB=6﹣b,于是得到結(jié)論.
過A作AF⊥OB于F,如圖所示:
∵A(3,3),B(6,0),
∴AF=3,OF=3,OB=6,
∴BF=3,
∴OF=BF,
∴AO=AB,
∵tan∠AOB=,
∴∠AOB=60°,
∴△AOB是等邊三角形,
∴∠AOB=∠ABO=60°,
∵將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,
∴∠CED=∠OAB=60°,
∵∠OCE+∠COE=∠OCE+60°=∠CED+∠DEB=60°+∠DEB,
∴∠OCE=∠DEB,
∴△CEO∽△EDB,
∴==,
∵OE=,
∴BE=OB﹣OE=6﹣=,
設(shè)CE=a,則CA=a,CO=6﹣a,ED=b,則AD=b,DB=6﹣b,
則,,
∴6b=30a﹣5ab①,24a=30b﹣5ab②,
②﹣①得:24a﹣6b=30b﹣30a,
∴,
即AC:AD=2:3.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】測量計算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點處觀測旗桿頂點A的仰角為50°,觀測旗桿底部B點的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D是BC邊的中點,連接AD,分別過點A,C作AE∥BC,CE∥AD交于點E,連接DE,交AC于點O.
(1)求證:四邊形ADCE是矩形;
(2)若AB=10,sin∠COE=,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),已知拋物線經(jīng)過坐標原點O和x軸上另一點E,頂點M的坐標為(2,4);矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求直線y=3與拋物線交點的坐標;
(2)將矩形ABCD以每秒1個單位長度的速度從圖⑴所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖(2)所示).
①當時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,⊙O是△ABC的外接圓,D為弧AC的中點,E是BA延長線上一點,∠DAE=105°.
(1)求∠CAD的度數(shù);
(2)若⊙O的半徑為4,求弧BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售 A、B 兩種品牌的彩色電視機,A、B 兩種彩電的進價每臺分別為2000 元、1600元.一 月 份 A、B 兩 種 彩 電 每 臺 銷 售 價 分 別 為 2700 元、2100 元,月 利 潤 為 12000元.為了增加利潤,二月份營銷人員提供了兩種銷售策略:
策略一: A 種彩電每臺降價100元,B 種彩電每臺降價80元,估計月銷售量分別增長30%、40%;
策略二: A 種彩電每臺降價 150 元,B 種彩電每臺降價 100 元,估計月銷售量都增長50%.
根據(jù)以上信息完成下列各題:
(1)求一月份 A、B 兩種彩電的銷售量.
(2)二月份這兩種策略是否能增加利潤?
(3)二月份該商店應該采用上述兩種銷售策略中的哪一種,方能使商店所獲得的利潤較多?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,拋物線y=x2﹣(a+1)x+a與x軸交于A、B兩點(點A位于點B的左側(cè)),與y軸交于點C.已知△ABC的面積為6.
(1)求這條拋物線相應的函數(shù)表達式;
(2)在拋物線上是否存在一點P,使得∠POB=∠CBO,若存在,請求出點P的坐標;若不存在,請說明理由;
(3)如圖②,M是拋物線上一點,N是射線CA上的一點,且M、N兩點均在第二象限內(nèi),A、N是位于直線BM同側(cè)的不同兩點.若點M到x軸的距離為d,△MNB的面積為2d,且∠MAN=∠ANB,求點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市欲購進一種今年新上市的產(chǎn)品,購進價為20元件,為了調(diào)查這種新產(chǎn)品的銷路,該超市進行了試銷售,得知該產(chǎn)品每天的銷售量件與每件的銷售價元件之間有如下關(guān)系:
請寫出該超市銷售這種產(chǎn)品每天的銷售利潤元與x之間的函數(shù)關(guān)系式,并求出超市能獲取的最大利潤是多少元.
若超市想獲取1500元的利潤求每件的銷售價.
若超市想獲取的利潤不低于1500元,請求出每件的銷售價X的范圍?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com