【題目】生產(chǎn)某種農(nóng)產(chǎn)品的成本每千克20元,調(diào)查發(fā)現(xiàn),該產(chǎn)品每天銷售量y(千克)與銷售單價(jià)x(元/千克)滿足如下關(guān)系:,設(shè)這種農(nóng)產(chǎn)品的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
(3)物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不得高于每千克28元,該農(nóng)戶想在這種產(chǎn)品經(jīng)銷季節(jié)每天獲得150元的利潤,銷售價(jià)應(yīng)定為每千克多少元?
【答案】(1)w=-2(x-30)2+200;(2)當(dāng)x=30時(shí),w有最大值.w最大值為200;(3)25
【解析】
(1)根據(jù)總利潤=銷售量×單件利潤,列出函數(shù)關(guān)系式;
(2)利用二次函數(shù)的性質(zhì)求最大值;
(3)把w=150代入(2)的函數(shù)關(guān)系式中,解一元二次方程求x,根據(jù)x的取值范圍求x的值.
解:(1)根據(jù)題意得:w=(x-20)(-2x+80)=-2(x-30)2+200,
故w與x的函數(shù)關(guān)系式為:w=-2(x-30)2+200;
(2)w=-2(x-30)2+200
所以當(dāng)x=30時(shí),w有最大值.w最大值為200.
(3)當(dāng)w=150時(shí),可得方程-2(x-30)2+200=150.
解得x1=35,x2=25.
因?yàn)?/span>35>28,
所以x1=35不符合題意,應(yīng)舍去.
故銷售價(jià)應(yīng)定為每千克25元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的頂點(diǎn)、在圓上,若,圓的半徑為2,則陰影部分的面積是__________.(結(jié)果保留根號和)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)G為弧BC上一動(dòng)點(diǎn),CG與AB的延長線交于點(diǎn)F,連接OD.
(1)判定∠AOD與∠CGD的大小關(guān)系為 ,并求證:GB平分∠DGF.
(2)在G點(diǎn)運(yùn)動(dòng)過程中,當(dāng)GD=GF時(shí),DE=4,BF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).
(1)求一次函數(shù)和反比例函數(shù)解析式.
(2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長度至點(diǎn)F,連接AF、BF,求△ABF的面積.
(3)根據(jù)圖象,直接寫出不等式﹣x+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過點(diǎn),交x軸于A,B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè).
求拋物線的解析式,并寫出頂點(diǎn)M的坐標(biāo);
連接OC,CM,求的值;
若點(diǎn)P在拋物線的對稱軸上,連接BP,CP,BM,當(dāng)時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強(qiáng)在教學(xué)樓的點(diǎn)P處觀察對面的辦公大樓.為了測量點(diǎn)P到對面辦公大樓上部AD的距離,小強(qiáng)測得辦公大樓頂部點(diǎn)A的仰角為45°,測得辦公大樓底部點(diǎn)B的俯角為60°,已知辦公大樓高46米,CD=10米.求點(diǎn)P到AD的距離(用含根號的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=60°,OF平分∠MON,點(diǎn)A在射線OM上, P,Q是射線ON上的兩動(dòng)點(diǎn),點(diǎn)P在點(diǎn)Q的左側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交OM,OF,ON于點(diǎn)D,B,C,連接AB,PB.
(1)依題意補(bǔ)全圖形;
(2)判斷線段 AB,PB之間的數(shù)量關(guān)系,并證明;
(3)連接AP,設(shè),當(dāng)P和Q兩點(diǎn)都在射線ON上移動(dòng)時(shí),是否存在最小值?若存在,請直接寫出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)放假期間,小明和小華準(zhǔn)備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)都被選中的可能性相同.
(1)小明選擇去蜀南竹海旅游的概率為 .
(2)用樹狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(-4,4).點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度沿x軸向點(diǎn)O運(yùn)動(dòng);點(diǎn)Q從點(diǎn)O同時(shí)出發(fā),以相同的速度沿x軸的正方向運(yùn)動(dòng),規(guī)定點(diǎn)P到達(dá)點(diǎn)O時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接BP,過P點(diǎn)作BP的垂線,與過點(diǎn)Q平行于y軸的直線l相交于點(diǎn)D.BD與y軸交于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).
(1)∠PBD的度數(shù)為 ,點(diǎn)D的坐標(biāo)為 (用t表示);
(2)當(dāng)t為何值時(shí),△PBE為等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com