【題目】如圖,四邊形ABCD中,AB=CB,AD=CD,對角線AC,BD相交于點(diǎn)O,OEAB,OFCB,垂足分別是E、F.求證:OE=OF

【答案】見解析

【解析】欲證明OE=OF,只需推知BD平分∠ABC,所以通過全等三角形△ABD≌△CBD(SSS)的對應(yīng)角相等得到∠ABD=∠CBD,問題就迎刃而解了.

證明:在△ABD和△CBD中,

AB=CB,AD=CD,BD=BD,

∴△ABD≌△CBD(SSS),

∴∠ABD=∠CBD,

∴BD平分∠ABC.

又∵OE⊥AB,OF⊥CB,

∴OE=OF.

“點(diǎn)睛”本題考查了全等三角形的判定與性質(zhì).在應(yīng)用全等三角形的判定時(shí),要注意三角形間的公共邊和公共角,必要時(shí)添加適當(dāng)輔助線構(gòu)造三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)拼一拼,畫一畫:請你用4個(gè)長為a,寬為b的矩形拼成一個(gè)大正方形,并且正中間留下一個(gè)洞,這個(gè)洞恰好是一個(gè)小正方形。

2)用不同方法計(jì)算中間的小正方形的面積,聰明的你能發(fā)現(xiàn)什么?

3)當(dāng)拼成的這個(gè)大正方形邊長比中間小正方形邊長多3cm時(shí),它的面積就多24cm2,求中間小正方形的邊長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是半圓,連接AB,點(diǎn)O為AB的中點(diǎn),點(diǎn)C,D在 上,連接AD,CO,BC,BD,OD.若∠COD=62°,且AD∥OC,則∠ABD的大小是(

A.26°
B.28°
C.30°
D.32°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形中,上一動(dòng)點(diǎn),點(diǎn)的延長線上,平分,交于點(diǎn).

(1)如圖①,連接,求證: ;

(2)如圖②,當(dāng)時(shí),求證: ;

(3)如圖③,當(dāng)時(shí),若平分,求證: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)三角形的兩條邊長分別是1cm2cm,一個(gè)內(nèi)角為40度.

(1)請你借助圖1畫出一個(gè)滿足題設(shè)條件的三角形;

(2)你是否還能畫出既滿足題設(shè)條件,又與(1)中所畫的三角形不全等的三角形?若能,請你在圖1的右邊用“尺規(guī)作圖”作出所有這樣的三角形;若不能,請說明理由;

(3)如果將題設(shè)條件改為“三角形的兩條邊長分別是3cm4cm,一個(gè)內(nèi)角為40°”,那么滿足這一條件,且彼此不全等的三角形共有幾個(gè).

友情提醒:請?jiān)谀惝嫷膱D中標(biāo)出已知角的度數(shù)和已知邊的長度,“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,點(diǎn)DEAB上,將ACDBCE分別沿CD、CE翻折,點(diǎn)A、B分別落在點(diǎn)A′、B′的位置,再將A′CDB′CE分別沿A′C、B′C翻折,點(diǎn)D與點(diǎn)E恰好重合于點(diǎn)O,則∠A′OB′的度數(shù)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意解答
(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點(diǎn),且∠EAF=60°,延長FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關(guān)系為

(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點(diǎn),且∠EAF= ∠BAD,線段BE、EF、FD之間存在什么數(shù)量關(guān)系,為什么?

(3)如圖3,點(diǎn)A在點(diǎn)O的北偏西30°處,點(diǎn)B在點(diǎn)O的南偏東70°處,且AO=BO,點(diǎn)A沿正東方向移動(dòng)249米到達(dá)E處,點(diǎn)B沿北偏東50°方向移動(dòng)334米到達(dá)點(diǎn)F處,從點(diǎn)O觀測到E、F之間的夾角為70°,根據(jù)(2)的結(jié)論求E、F之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB的垂直平分線分別交AB、BC于點(diǎn)M、P,AC的垂直平分線分別交AC、BC于點(diǎn)N、Q,∠BAC=110°,則∠PAQ=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=60°,∠B=58°.甲、乙兩人想在△ABC外部取一點(diǎn)D,使得△ABC與△DCB全等,其作法如下:
(甲)①作∠A的角平分線L.
②以B為圓心,BC長為半徑畫弧,交L于D點(diǎn),則D即為所求.
(乙)①過B作平行AC的直線L.
②過C作平行AB的直線M,交L于D點(diǎn),則D即為所求.
對于甲、乙兩人的作法,下列判斷何者正確?( 。

A.兩人皆正確
B.兩人皆錯(cuò)誤
C.甲正確,乙錯(cuò)誤
D.甲錯(cuò)誤,乙正確

查看答案和解析>>

同步練習(xí)冊答案