【題目】根據(jù)題意解答
(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點(diǎn),且∠EAF=60°,延長FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關(guān)系為 .
(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點(diǎn),且∠EAF= ∠BAD,線段BE、EF、FD之間存在什么數(shù)量關(guān)系,為什么?
(3)如圖3,點(diǎn)A在點(diǎn)O的北偏西30°處,點(diǎn)B在點(diǎn)O的南偏東70°處,且AO=BO,點(diǎn)A沿正東方向移動249米到達(dá)E處,點(diǎn)B沿北偏東50°方向移動334米到達(dá)點(diǎn)F處,從點(diǎn)O觀測到E、F之間的夾角為70°,根據(jù)(2)的結(jié)論求E、F之間的距離.
【答案】
(1)EF=BE+DF
(2)
解:EF=BE+DF仍然成立.
證明:如圖2,延長FD到G,使DG=BE,連接AG,
∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,
∴∠B=∠ADG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF= ∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△GAF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF
(3)
解:如圖3,連接EF,延長AE、BF相交于點(diǎn)C,
∵∠AOB=20°+90°+(90°﹣60°)=140°,
∠EOF=70°,
∴∠EOF= ∠AOB,
又∵OA=OB,
∠OAC+∠OBC=(90°﹣20°)+(60°+50°)=180°,
∴符合探索延伸中的條件,
∴結(jié)論EF=AE+BF成立,
即EF=583米.
【解析】解:(1)EF=BE+DF;
證明:如圖1,延長FD到G,使DG=BE,連接AG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△GAF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
所以答案是:EF=BE+DF
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C、D在同一條直線上,點(diǎn)E、F分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:△ACE≌△DBF;
(2)求證:四邊形BFCE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在新晚報舉辦的“萬人戶外徒步活動”中,為統(tǒng)計參加活動人員的年齡情況,從參加人員中隨機(jī)抽取了若干人的年齡作為樣本,進(jìn)行數(shù)據(jù)統(tǒng)計,制成如圖的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分).
(1)本次活動統(tǒng)計的樣本容量是多少?
(2)求本次活動中70歲以上的人數(shù),并補(bǔ)全條形統(tǒng)計圖;
(3)本次參加活動的總?cè)藬?shù)約為12000人,請你估算參加活動人數(shù)最多的年齡段的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CB,AD=CD,對角線AC,BD相交于點(diǎn)O,OE⊥AB,OF⊥CB,垂足分別是E、F.求證:OE=OF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為:A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)將△ABC沿y軸翻折,畫出翻折后的△A1B1C1 , 點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo)是
(2)△ABC關(guān)于x軸對稱的圖形△A2B2C2 , 直接寫出點(diǎn)A2的坐標(biāo)
(3)若△DBC與△ABC全等(點(diǎn)D與點(diǎn)A重合除外),請直接寫出滿足條件點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人沿一條直路行走,此人離出發(fā)地的距離千米與行走時間分鐘的函數(shù)關(guān)系如圖所示,請根據(jù)圖象提供的信息回答下列問題:
此人離開出發(fā)地最遠(yuǎn)距離是______ 千米;
此人在這次行走過程中,停留所用的時間為______ 分鐘;
由圖中線段OA可知,此人在這段時間內(nèi)行走的速度是每小時______ 千米;
此人在120分鐘內(nèi)共走了______ 千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并理解下面的證明過程,并在每步后的括號內(nèi)填寫該步推理的依據(jù).
已知:如圖,AM,BN,CP是△ABC的三條角平分線.
求證:AM、BN、CP交于一點(diǎn).
證明:如圖,設(shè)AM,BN交于點(diǎn)O,過點(diǎn)O分別作OD⊥BC,OF⊥AB,垂足分別為點(diǎn)D,E,F(xiàn).
∵O是∠BAC角平分線AM上的一點(diǎn)( ),
∴OE=OF( ).
同理,OD=OF.
∴OD=OE( ).
∵CP是∠ACB的平分線( ),
∴O在CP上( ).
因此,AM,BN,CP交于一點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直線AG分別交DE、BC于M、N兩點(diǎn).若∠B=90°,AB=4,BC=3,EF=1,則BN的長度為何?( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com