【題目】解分式方程:(1;(2

【答案】(1)x=-;(2)原分式方程無解.

【解析】

1)方程兩邊都乘以(x-1)(x+2)化分式方程為整式方程,解整式方程求得x的值,再檢驗(yàn)即可得;

2)方程兩邊都乘以(x+1)(x-1)化分式方程為整式方程,解整式方程求得x的值,再檢驗(yàn)即可得.

解:(1)兩邊都乘以(x-1)(x+2),得:xx-1=2x+2+x-1)(x+2),

整理,得:4x+2=0,

解得:x=-,

經(jīng)檢驗(yàn):x=-是原分式方程的解,

所以原分式方程的解為x=-;

2)兩邊都乘以(x+1)(x-1),得:(x+12-4=x+1)(x-1),

整理,得:2x-2=0

解得:x=1,

檢驗(yàn):當(dāng)x=1時(shí),(x+1)(x-1=0,

x=1是分式方程的增根,

則原分式方程無解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CDAB,垂足為D,點(diǎn)EBC上,EF⊥AB,垂足為F,∠1=2

1)試說明:DGBC;

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b< 的解集;
(3)過點(diǎn)B作BC⊥x軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC中頂點(diǎn)A在x軸負(fù)半軸上,B、C在第二象限,對角線交于點(diǎn)D,若C、D兩點(diǎn)在反比例函數(shù) 的圖象上,且OABC的面積等于12,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=3cm、AC=4cm、BC=5cm,在ABC所在平面內(nèi)畫一條直線,將ABC分割成兩個(gè)三角形,使其中的一個(gè)是等腰三角形,則這樣的直線最多可畫的條數(shù)為( 。

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面內(nèi),若一個(gè)點(diǎn)到一條直線的距離不大于1,則稱這個(gè)點(diǎn)是該直線的伴侶點(diǎn).在平面直角坐標(biāo)系中,已知點(diǎn)M1,0),過點(diǎn)M作直線l平行于y軸.

1)試判斷點(diǎn)A(-1,a)是否是直線l伴侶點(diǎn)?請說明理由;

2)若點(diǎn)P2m5,8)是直線l伴侶點(diǎn),求m的取值范圍;

3)若點(diǎn)A(-1a)、Bb,2a)、C(-a1)是平面直角坐標(biāo)系中的三個(gè)點(diǎn),將三角形ABC進(jìn)行平移,平移后點(diǎn)A的對應(yīng)點(diǎn)為D,點(diǎn)B的對應(yīng)點(diǎn)為E,點(diǎn)C的對應(yīng)點(diǎn)為F.若點(diǎn)F剛好落在直線l上,F的縱坐標(biāo)為a+b,點(diǎn)E落在x軸上,且三角形MFD的面積為,試判斷點(diǎn)B是否是直線l伴侶點(diǎn)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品A的零售價(jià)為每件900元,為了適應(yīng)市場競爭,商店按零售價(jià)的九折優(yōu)惠后,再讓利40元銷售,仍可獲利10%

1)這種商品A的進(jìn)價(jià)為多少元?

2)現(xiàn)有另一種商品B進(jìn)價(jià)為600元,每件商品B也可獲利10%.對商品AB共進(jìn)貨100件,要使這100件商品共獲純利6670元,則需對商品A、B分別進(jìn)貨多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖:ADBC,E、F分別在DC、AB延長線上.DCB=DAB,AEEF,DEA=30°.

(1)求證:DC//AB.

(2)求AFE的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋中放有290個(gè)涂有紅、黑、白三種顏色的質(zhì)地相同的小球.若紅球個(gè)數(shù)是黑球個(gè)數(shù)的2倍多40個(gè).從袋中任取一個(gè)球是白球的概率是

(1)求袋中紅球的個(gè)數(shù);

(2)求從袋中任取一個(gè)球是黑球的概率.

查看答案和解析>>

同步練習(xí)冊答案