【題目】如圖,在ABC中,AB=3cm、AC=4cm、BC=5cm,在ABC所在平面內(nèi)畫一條直線,將ABC分割成兩個三角形,使其中的一個是等腰三角形,則這樣的直線最多可畫的條數(shù)為(  )

A. 3B. 4C. 5D. 6

【答案】C

【解析】

首先根據(jù)勾股定理的逆定理判定△ABC是直角三角形,再根據(jù)等腰三角形的性質(zhì)分別利用AC、BC為腰以及AB為底得出符合題意的圖形即可.

解:如圖所示:BC=3AC=4,AB=5

32+42=52,

∴△ABC是直角三角形,∠BAC=90°

CD1=AC=4,CD3=AD3BA=BD4=3,AB=AD2=3D5A=D5B,BD6=CD6∵△ABC是直角三角形,

D3D5重合,

故能得到符合題意的等腰三角形5個.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A的坐標為(80),點B的坐標為(6,4),點C的坐標為(0,4),點P從原點O出發(fā),以每秒3的單位長度的速度沿x軸向右運動,點Q從點B出發(fā),以每秒1的單位長度的速度沿線段BC向左運動,PQ兩點同時出發(fā),當點Q運動到點C時,P,Q兩點停止運動,設運動時間為t(秒).

1)當t=   時,四邊形OPQC為矩形;

2)當t=   時,線段PQ平分四邊形OABC的面積;

3)在整個運動過程中,當以ACPQ為頂點的四邊形為平行四邊形時,求該平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國數(shù)學史上最先完成勾股定理證明的數(shù)學家是公元3世紀三國時期的趙爽,他為了證明勾股定理,創(chuàng)制了一副弦圖,后人稱其為趙爽弦圖(如圖1).圖2弦圖變化得到,它是由八個全等的直角三角形拼接而成.將圖中正方形MNKT,正方形EFGH,正方形ABCD的面積分別記為S1,S2S3,若S1+S2+S3=18,則正方形EFGH的面積為( 

A. B. 5C. 6D. 9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,E是AD的中點,AB=8 ,F(xiàn)是線段CE上的動點,則BF的最小值是( )

A.10
B.12
C.16
D.18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1)
(2) +1=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解分式方程:(1;(2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:AM的值為 時,四邊形AMDN是矩形;AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結論正確的是( )
A.當a=1時,函數(shù)圖象過點(﹣1,1)
B.當a=﹣2時,函數(shù)圖象與x軸沒有交點
C.若a>0,則當x≥1時,y隨x的增大而減小
D.若a<0,則當x≤1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案