【題目】如圖,某班數(shù)學(xué)興趣小組利用數(shù)學(xué)知識測量建筑物DEFC的高度.他們從點(diǎn)A出發(fā)沿著坡度為i=1:2.4的斜坡AB步行26米到達(dá)點(diǎn)B處,此時測得建筑物頂端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD為水平的地面,則此建筑物的高度CD約為( 。┟祝▍⒖紨(shù)據(jù):≈1.7,tan35°≈0.7)
A. 23.1 B. 21.9 C. 27.5 D. 30
【答案】B
【解析】
過點(diǎn)B作BN⊥AD,BM⊥DC垂足分別為N,M,設(shè)BN=x,則AN=2.4x,在Rt△ABN中,根據(jù)勾股定理求出x的值,從而得到BN和DM的值,然后分別在Rt△BDM和Rt△BCM中求出BM和CM的值,即可求出答案.
如圖所示:過點(diǎn)B作BN⊥AD,BM⊥DC垂足分別為N,M,
∵i=1:2.4,AB=26m,
∴設(shè)BN=x,則AN=2.4x,
∴AB==2.6x,
則2.6x=26,
解得:x=10,
故BN=DM=10m,
則tan30°= = = ,
解得:BM=10,
則tan35°== =0.7,
解得:CM≈11.9(m),
故DC=MC+DM=11.9+10=21.9(m).
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,AB=2,則圖中陰影部分的面積為( 。
A. π B. 2π C. D. 4π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AB的垂直平分線DE交AC于D,交AB于E,下述結(jié)論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周長等于AB+BC;(4)D是AC中點(diǎn).其中正確的命題序號是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設(shè)先發(fā)車輛行駛的時間為xh,兩車之間的距離為ykm,圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問題:
(1)慢車的速度為_____km/h,快車的速度為_____km/h;
(2)解釋圖中點(diǎn)C的實際意義并求出點(diǎn)C的坐標(biāo);
(3)求當(dāng)x為多少時,兩車之間的距離為500km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣西賀州市)如圖,將線段AB繞點(diǎn)O順時針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應(yīng)點(diǎn)A′的坐標(biāo)是( )
A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠B=45°,AB=2,AC=4,△DAE是等腰直角三角形,且∠DAE=90°, D在邊BC上.
(1)求BC的長;
(2)如圖1,當(dāng)點(diǎn)E在AC上時,求點(diǎn)E到BC的距離;
(3)如圖2,當(dāng)點(diǎn)D從點(diǎn)B向點(diǎn)C運(yùn)動時,求點(diǎn)E到BC的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.點(diǎn)在軸的正半軸上,邊AB在軸上(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求點(diǎn)C的坐標(biāo).
(2)點(diǎn)D是BC邊上一點(diǎn),點(diǎn)E是AB邊上一點(diǎn),且點(diǎn)E和點(diǎn)C關(guān)于AD所在直線對稱,直接寫出點(diǎn)D坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程rx2+(r+2)x+r﹣1=0有根只有整數(shù)根的一切有理數(shù)r的值有( 。﹤.
A. 1 B. 2 C. 3 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A,B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D,E.求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=2,將斜邊AB繞點(diǎn)A逆時針旋轉(zhuǎn)90°至AB',連接B′C,求△AB′C的面積.
(3)拓展提升:如圖3,等邊△EBC中,EC=BC=3cm,點(diǎn)O在BC上且OC=2cm,動點(diǎn)P從點(diǎn)E沿射線EC以lcm/s速度運(yùn)動,連接OP,將線段OP繞點(diǎn)O逆時針旋轉(zhuǎn)120°得到線段OF,設(shè)點(diǎn)P運(yùn)動的時間為t秒.
①當(dāng)t=______秒時,OF∥ED.
②當(dāng)t=______秒時,點(diǎn)F恰好落在射線EB上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com