【題目】已知等邊三角形的高為6,在這個(gè)三角形所在的平面內(nèi)有一個(gè)點(diǎn),若點(diǎn)的距離是1,點(diǎn)的距離是2,則點(diǎn)的最小距離與最大距離分別是_______.

【答案】39

【解析】

根據(jù)題意畫出相應(yīng)的圖形,直線DM與直線NF都與AB的距離為1,直線NG與直線ME都與AC的距離為2,當(dāng)PN重合時(shí),HNPBC的最小距離;當(dāng)PM重合時(shí),MQPBC的最大距離,根據(jù)題意得到△NFG與△MDE都為等邊三角形,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出DBFB的長(zhǎng),以及CGCE的長(zhǎng),進(jìn)而由DB+BC+CE求出DE的長(zhǎng),由BC-BF-CG求出FG的長(zhǎng),求出等邊三角形NFG與等邊三角形MDE的高,即可確定出點(diǎn)PBC的最小距離和最大距離.

解:根據(jù)題意畫出相應(yīng)的圖形,直線DM與直線NF都與AB的距離為1,直線NG與直線ME都與AC的距離為2

當(dāng)PN重合時(shí),HNPBC的最小距離;當(dāng)PM重合時(shí),MQPBC的最大距離,

根據(jù)題意得到△NFG△MDE都為等邊三角形,

∵等邊三角形ABC的高為6

∴等邊三角形ABC的邊長(zhǎng):BC=

DB=FB,CE=CG

DE=DB+BC+CE=+=,

FG=BC-BF-CG=

NH=3,MQ=9

則點(diǎn)PBC的最小距離和最大距離分別是39

故答案為:3,9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知O的半徑為1,PAQ的正切值為AQO的切線,O從點(diǎn)A開始沿射線AQ的方向滾動(dòng),切點(diǎn)為A'

1sin∠PAQ= ,cos∠PAQ= ;

2如圖1當(dāng)O在初始位置時(shí),圓心O到射線AP的距離為 ;

如圖2,當(dāng)O的圓心在射線AP上時(shí),AA'= ;

3O的滾動(dòng)過程中,設(shè)AA'之間的距離為m,圓心O到射線AP的距離為n,nm之間的函數(shù)關(guān)系式并探究當(dāng)m分別在何范圍時(shí),O與射線AP相交、相切、相離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB90°,在∠AOB的平分線OM上有一點(diǎn)C,將一個(gè)三角板的直角頂點(diǎn)與C重合,它的兩條直角邊分別與OAOB(或它們的反向延長(zhǎng)線)相交于點(diǎn)D,E.

當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CDOA垂直時(shí)(如圖①),易證:ODOEOC;

當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CDOA不垂直時(shí),即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,線段ODOE,OC之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,不需證明.

  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長(zhǎng)為30m的籬笆,一面利用墻(墻的最大可用長(zhǎng)度為10m),圍成中間隔有一道籬笆(平行于AB)的長(zhǎng)方形花圃.

1)設(shè)花圃的一邊ABxm,則BC的長(zhǎng)可用含x的代數(shù)式表示為______m;

2)當(dāng)AB的長(zhǎng)是多少米時(shí),圍成的花圃面積為63平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)稱軸與 y軸平行且經(jīng)過原點(diǎn)O的拋物線也經(jīng)過A(2,m),B(4,m),若△AOB的面積為4,則拋物線的解析式為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y(tǒng)=a(x﹣4)2+h,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.

(1)當(dāng)a=﹣時(shí),①求h的值;②通過計(jì)算判斷此球能否過網(wǎng).

(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為m的Q處時(shí),乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,以AC為直徑作O交AB于點(diǎn)D,E為BC的中點(diǎn),連接DE并延長(zhǎng)交AC的延長(zhǎng)線于點(diǎn)F.

(1)求證:DE是O的切線;

(2)若CF=2,DF=4,求O直徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,點(diǎn)、分別在邊、上,且.下列結(jié)論:①;②;③;④;其中正確的是________(只填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點(diǎn)A-2,0).點(diǎn)Dy軸上,連接AD并將它沿x軸向右平移至BC的位置,且點(diǎn)B坐標(biāo)為(4,0),連接CDOD=AB

1)線段CD的長(zhǎng)為 ,點(diǎn)C的坐標(biāo)為

2)如圖2,若點(diǎn)M從點(diǎn)B出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿著x軸向左運(yùn)動(dòng),同時(shí)點(diǎn)N從原點(diǎn)O出發(fā),以相同的速度沿折線OD→DC運(yùn)動(dòng)(當(dāng)N到達(dá)點(diǎn)C時(shí),兩點(diǎn)均停止運(yùn)動(dòng)).假設(shè)運(yùn)動(dòng)時(shí)間為t秒.

t為何值時(shí),MNy軸;

②求t為何值時(shí),SBCM=2SADN

查看答案和解析>>

同步練習(xí)冊(cè)答案