【題目】如圖,在平面直角坐標(biāo)系中,ABOC的頂點(diǎn)A(0,2),點(diǎn)B(﹣4,0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C在第一象限,若將△AOB沿x軸向右運(yùn)動(dòng)得到△EFG(點(diǎn)A、O、B分別與點(diǎn)E、F、G對(duì)應(yīng)),運(yùn)動(dòng)速度為每秒2個(gè)單位長(zhǎng)度,邊EF交OC于點(diǎn)P,邊EG交OA于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<2)秒.
(1)在運(yùn)動(dòng)過程中,線段AE的長(zhǎng)度為 (直接用含t的代數(shù)式表示);
(2)若t=1,求出四邊形OPEQ的面積S;
(3)在運(yùn)動(dòng)過程中,是否存在四邊形OPEQ為菱形?若存在,直接寫出此時(shí)四邊形OPEQ的面積;若不存在,請(qǐng)說明理由.
【答案】(1)2t;(2)2;(3)存在,3﹣5
【解析】
(1)根據(jù)距離=速度×?xí)r間即可解答;
(2)由平移的性質(zhì)可得AB∥EG,OA∥EF,可證四邊形OPEQ是平行四邊形,可得AE=BG=2;然后根據(jù)全等三角形的性質(zhì)可得AQ=OQ=OA=1,最后根據(jù)平行四邊形的面積公式求解即可;
(3)由菱形的性質(zhì)可得EQ=OQ,然后再根據(jù)相似三角形的性質(zhì)可得AQ=t,即OQ=2﹣,列方程可得t=﹣1,最后根據(jù)平行四邊形的面積公式求解即可;
解:(1)∵運(yùn)動(dòng)速度為每秒2個(gè)單位長(zhǎng)度
∴在運(yùn)動(dòng)過程中,線段AE的長(zhǎng)度為2t,
故答案為:2t;
(2)∵將△AOB沿x軸向右運(yùn)動(dòng)得到△EFG,
∴AB∥EG,OA∥EF,
∵四邊形ABOC是平行四邊形,
∴AB∥OC,
∴EG∥OC,
∵OQ∥PE,
∴四邊形OPEQ是平行四邊形,
∵A(0,2),點(diǎn)B(﹣4,0),
∴OA=2,OB=4,
∵t=1,
∴AE=BG=2,
∴OG=2,
∵AE=OC,
∵AC∥OB,
∴∠AEQ=∠OGQ,∠EAQ=∠GOQ,
∴△AEQ≌△OGQ(ASA),
∴AQ=OQ=OA=1,
∴四邊形OPEQ的面積S=1×2=2;
(3)存在,
由(2)知四邊形OPEQ是平行四邊形,
若四邊形OPEQ是菱形,
則EQ=OQ,
∵AE∥OB,AB∥EG,
∴∠AEQ=∠ABO=∠EGO,
∠EAQ=∠AOB,
∴△AEQ∽△ABO,
∴,
∵AE=t,
∴=,
∴AQ=t,
∴OQ=2﹣,
∵QE=OQ,
∴=OQ,
∴=2﹣,
解得:t=﹣1,
∴AE=﹣1,OQ=,
∴四邊形OPEQ的面積=AEOQ=3﹣5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 有一種用“☆”定義的新運(yùn)算,對(duì)于任意實(shí)數(shù)a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.
(1)已知﹣m☆3的結(jié)果是﹣4,則m= .
(2)將兩個(gè)實(shí)數(shù)2n和n﹣2用這種新定義“☆”加以運(yùn)算,結(jié)果為9,則n的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一個(gè)函數(shù),自變量x取a時(shí),函數(shù)值y也等于a,我們稱a為這個(gè)函數(shù)的不動(dòng)點(diǎn).如果二次函數(shù)y=x2+2x+c有兩個(gè)相異的不動(dòng)點(diǎn)x1、x2,且x1<1<x2,則c的取值范圍是( )
A. c<﹣3B. c<﹣2C. c<D. c<1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E是BC的中點(diǎn),連接AE與對(duì)角線BD交于點(diǎn)G,連接CG并延長(zhǎng),交AB于點(diǎn)F,連接DE交CF于點(diǎn)H,連接AH.以下結(jié)論:①CF⊥DE;②;③AD=AH;④GH=,其中正確結(jié)論的序號(hào)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小亮為了測(cè)量校園里教學(xué)樓AB的高度,將測(cè)角儀CD豎直放置在與教學(xué)樓水平距離為18m的地面上,若測(cè)角儀的高度為1.5m,測(cè)得教學(xué)樓的頂部A處的仰角為30°,則教學(xué)樓的高度是( )
A.55.5mB.54mC.19.5mD.18m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某網(wǎng)站調(diào)查,2019年網(wǎng)民最關(guān)注的熱點(diǎn)話題分別是:消費(fèi)、教育、環(huán)保、反腐及其他共五類,根據(jù)調(diào)查的部分相關(guān)數(shù)據(jù)繪制的統(tǒng)計(jì)圖如圖:
根據(jù)以上信息解答下列問題:
(1)請(qǐng)補(bǔ)全條形圖,并在圖中標(biāo)明相應(yīng)數(shù)據(jù).
(2)若某市中心城區(qū)約有90萬(wàn)人口,請(qǐng)你估計(jì)該市中心城區(qū)最關(guān)注教育問題的人數(shù)約有多少萬(wàn)人?
(3)據(jù)統(tǒng)計(jì),2017年網(wǎng)民最關(guān)注教育問題的人數(shù)所占百分比約為10%,則從2017年到2019年關(guān)注該問題網(wǎng)民數(shù)的年平均增長(zhǎng)率約為多少?(已知2017~2019年每年接受調(diào)查的網(wǎng)民人數(shù)相同,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在正方形中,點(diǎn)、分別是、邊上的動(dòng)點(diǎn),且,求證:.
(2)如圖2,在正方形中,如果點(diǎn)、分別是、延長(zhǎng)線上的動(dòng)點(diǎn),且,則、、之間數(shù)量關(guān)系是什么?請(qǐng)寫出證明過程.
(3)如圖1,若正方形的邊長(zhǎng)為6,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個(gè)含30°角的△EDF的30°角的頂點(diǎn)D放在AB邊上,E、F分別在AC、BC上,當(dāng)點(diǎn)D在AB邊上移動(dòng)時(shí),DE始終與AB垂直,若△CEF與△DEF相似,則AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A1(1,1),將點(diǎn)A1向上平移1個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度得到點(diǎn)A2;將點(diǎn)A2向上平移2個(gè)單位長(zhǎng)度,再向右平移4個(gè)單位長(zhǎng)度得到點(diǎn)A3;將點(diǎn)A3向上平移4個(gè)單位長(zhǎng)度,再向右平移8個(gè)單位長(zhǎng)度得到點(diǎn)A4,…按這個(gè)規(guī)律平移下去得到點(diǎn)An(n為正整數(shù)),則點(diǎn)An的坐標(biāo)是( 。
A.(2n,2n﹣1)B.(2n﹣1,2n)
C.(2n﹣1,2n+1)D.(2n﹣1,2n﹣1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com