【題目】 有一種用“☆”定義的新運算,對于任意實數(shù)a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.
(1)已知﹣m☆3的結果是﹣4,則m= .
(2)將兩個實數(shù)2n和n﹣2用這種新定義“☆”加以運算,結果為9,則n的值是多少?
科目:初中數(shù)學 來源: 題型:
【題目】兩條拋物線與的頂點相同.
(1)求拋物線的解析式;
(2)點是拋物找在第四象限內圖象上的一動點,過點作軸,為垂足,求的最大值;
(3)設拋物線的頂點為點,點的坐標為,問在的對稱軸上是否存在點,使線段繞點順時針旋轉90°得到線段,且點恰好落在拋物線上?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y4x4與x軸,y軸分別交于點A,B,點A在拋物線yax2bx3a(a0)上,將點B向右平移3個單位長度,得到點C.
(1)拋物線的頂點坐標為 (用含a的代數(shù)式表示)
(2)若a1,當t-1≤x≤t時,函數(shù)yax2bx3a(a0)的最大值為y1,最小值為y2,且y1y22,求t的值;
(3)若拋物線與線段BC恰有一個公共點,結合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,BC=2AB=4,點E,F分別是BC,AD的中點.
(1)求證:△ABE≌△CDF;
(2)當四邊形AECF為菱形時,求出該菱形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如表:
命中環(huán)數(shù) | 6 | 7 | 8 | 9 | 10 |
甲命中相應環(huán)數(shù)的次數(shù) | 0 | 1 | 3 | 1 | 0 |
乙命中相應環(huán)數(shù)的次數(shù) | 2 | 0 | 0 | 2 | 1 |
關于以上數(shù)據(jù),下列說法錯誤的是( )
A.甲命中環(huán)數(shù)的中位數(shù)是8環(huán)
B.乙命中環(huán)數(shù)的眾數(shù)是9環(huán)
C.甲的平均數(shù)和乙的平均數(shù)相等
D.甲的方差小于乙的方差
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,扇形OAB的半徑為4,∠AOB=90°,P是半徑OB上一動點,Q是上一動點.
(1)連接AQ、BQ、PQ,則∠AQB的度數(shù)為 ;
(2)當P是OB中點,且PQ∥OA時,求的長;
(3)如圖2,將扇形OAB沿PQ對折,使折疊后的恰好與半徑OA相切于點C.若OP=3,求點O到折痕PQ的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M在線段OA和射線AC上運動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)是否存在點M,使△OMC的面積是△OAC的面積的?若存在求出此時點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的弦,BC切⊙O于點B,AD⊥BC,垂足為D,OA是⊙O的半徑,且OA=3.
(1)求證:AB平分∠OAD;
(2)若點E是優(yōu)弧 上一點,且∠AEB=60°,求扇形OAB的面積.(計算結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,ABOC的頂點A(0,2),點B(﹣4,0),點O為坐標原點,點C在第一象限,若將△AOB沿x軸向右運動得到△EFG(點A、O、B分別與點E、F、G對應),運動速度為每秒2個單位長度,邊EF交OC于點P,邊EG交OA于點Q,設運動時間為t(0<t<2)秒.
(1)在運動過程中,線段AE的長度為 (直接用含t的代數(shù)式表示);
(2)若t=1,求出四邊形OPEQ的面積S;
(3)在運動過程中,是否存在四邊形OPEQ為菱形?若存在,直接寫出此時四邊形OPEQ的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com