【題目】(9分)如圖,已知點B、E、C、F在同一直線上,AB=DE,∠A=∠D,AC∥DF.
求證:(1)△ABC≌△DEF; (2)BE=CF
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是一個長為、寬為的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.
(1)圖②中的陰影部分的面積為
(2)觀察圖②,請你寫出代數(shù)式與之間的等量關(guān)系式
(3)若則
(4)實際上有許多代數(shù)恒等式可以用圖形的面積來表示.如圖③,它表示
(5)試畫出一個幾何圖形,使它的面積能表示
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線AM∥BN,點E,F,D在射線AM上,點C在射線BN上,且∠BCD=∠A,BE平分∠ABF,BD平分∠FBC.
(1)求證:AB∥CD.
(2)如果平行移動CD,那么∠AFB與∠ADB的比值是否發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這兩個角的比值.
(3)如果∠A=100°,那么在平行移動CD的過程中,是否存在某一時刻,使∠AEB=∠BDC?若存在,求出此時∠AEB的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當點H與點A重合時,EF=2 .
以上結(jié)論中,你認為正確的有 . (填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD……X”,請你作出猜想:當∠AMN= °時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為節(jié)約能源,某單位按以下規(guī)定收取每月電費:用電不超過140度,按每度元收費,如果超過140度,超過部分按每度元收費.
若某住戶六月份的用電量是130度,該用戶六月份應(yīng)繳多少電費?
若該住戶七月份的用電量是200度,該用戶七月份應(yīng)繳多少電費?
若某住戶十月份的用電量是a度,該用戶十月份應(yīng)繳多少電費?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC,BD相交于點O,OB=OD,BD=CD,∠BAC=∠BDC=90°.
(1)填空:∠ABD=∠ ;
(2)求的值;
(3)點D關(guān)于直線BC的對稱點為N,連接AN,請補全圖形,探究線段AN,AD有怎樣的關(guān)系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com