【題目】如圖,拋物線y=﹣x2+x+2x軸交于點A,點B,與y軸交于點C,點D與點C關于x軸對稱,點Px軸上的一個動點,設點P的坐標為(m0),過點Px軸的垂線1交拋物線于點Q

1)求點A、點B、點C的坐標;

2)當點P在線段OB上運動時,直線1交直線BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;

3)點P在線段AB上運動過程中,是否存在點Q,使得以點B、QM為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.

【答案】1A(﹣1,0),B40),C02);(2m2時,四邊形CQMD是平行四邊形;(3)存在,點Q3,2)或(﹣1,0).

【解析】

1)令拋物線關系式中的x0y0,分別求出y、x的值,進而求出與x軸,y軸的交點坐標;

2)用m表示出點Q,M的縱坐標,進而表示QM的長,使CDQM,即可求出m的值;

3)分三種情況進行解答,即①∠MBQ90°,②∠MQB90°,③∠QMB90°分別畫出相應圖形進行解答.

解:(1)拋物線y=﹣x2+x+2,當x0時,y2,因此點C0,2),

y0時,即:﹣x2+x+20,解得x14,x2=﹣1,因此點A(﹣1,0),B4,0),

故:A(﹣1,0),B4,0),C0,2);

2)∵點D與點C關于x軸對稱,∴點D0,2),CD4,

設直線BD的關系式為ykx+b,把D0,2),B4,0)代入得,

,解得,k,b=﹣2

∴直線BD的關系式為yx2

Mm,m2),Qm,m2+m+2),

QM=﹣m2+m+2m+2)=﹣m2+m+4,

QMCD時,四邊形CQMD是平行四邊形;

∴﹣m2+m+44,

解得m10(舍去),m22,

答:m2時,四邊形CQMD是平行四邊形;

3)在RtBOD中,OD2OB4,因此OB2OD

①若∠MBQ90°時,如圖1所示,

當△QBM∽△BOD時,QP2PB,

設點P的橫坐標為x,則QP=﹣x2+x+2,PB4x,

于是﹣x2+x+224x),

解得,x13,x24(舍去),

x3時,PB431

PQ2PB2,

∴點Q的坐標為(3,2);

②若∠MQB90°時,如圖2所示,此時點P、Q與點A重合,

Q(﹣10);

③由于點M在直線BD上,因此∠QMB≠90°,這種情況不存在△QBM∽△BOD

綜上所述,點P在線段AB上運動過程中,存在點Q,使得以點B、QM為頂點的三角形與△BOD相似,

Q3,2)或(﹣1,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店將每件進價為80元的某種商店按每件110元出售,每天可售出100件.該商店想通過降低售價、增加銷售量的方法來提高利潤.經市場調查,發(fā)現(xiàn)這種商品每件每降價5元,每天的銷售量可增加50件.設商品降價x元,每天銷售該商品獲得的利潤為y元.

(1)求y(元)關于x(元)的函數(shù)關系式,并寫出x的取值范圍.

(2)求當x取何值時y最大?并求出y的最大值.

(3)若要是每天銷售利潤為3750元,且盡可能最大的向顧客讓利,應將該商品降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OEFG和正方形ABCD是位似圖形,點F的坐標為(1,1),點C的坐標為(4,2),則這兩個正方形位似中心的坐標是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的對稱軸為,且過點,有下列結論:①;②;③;④;其中所有正確的結論是(填序號):______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學興趣小組活動中,陽光和樂觀兩位同學設計了如圖所示的兩個轉盤做游戲(每個轉盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內標上數(shù)字).游戲規(guī)則如下:兩人分別同時轉動甲、乙轉盤,轉盤停止后,若指針所指區(qū)域內兩數(shù)和小于12,則陽光獲勝,反之則樂觀獲勝(若指針停在等分線上,重轉一次,直到指針指向某一份內為止).

1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結果;

2)游戲對雙方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市用1200元購進一批甲玩具,用800元購進一批乙玩具,所購甲玩具件數(shù)是乙玩具件數(shù)的,已知甲玩具的進貨單價比乙玩具的進貨單價多1元.

1)求:甲、乙玩具的進貨單價各是多少元?

2)玩具售完后,超市決定再次購進甲、乙玩具(甲、乙玩具的進貨單價不變),購進乙玩具的件數(shù)比甲玩具件數(shù)的2倍多60件,求:該超市用不超過2100元最多可以采購甲玩具多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AM是⊙O直徑,弦BCAM,垂足為點N,弦CDAM于點E,連按ABBE

1)如圖1,若CDAB,垂足為點F,求證:∠BED2BAM;

2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE2CN;

3)如圖3ABCD,BECD47,AE11,求EM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某航天飛機在地球表面點P的正上方A處,從A處觀測到地球上的最遠點Q,即AQ是⊙O的切線,若∠QAPα,地球半徑為R

求:(1)航天飛機距地球表面的最近距離AP的長;

(2)P、Q兩點間的地面距離,即的長.(注:本題最后結果均用含α,R的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案