【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+6經(jīng)過點A(﹣3,0)和點B(2,0).直線y=h(h為常數(shù),且0<h<6)與BC交于點D,與y軸交于點E,與AC交于點F,與拋物線在第二象限交于點G.
(1)求拋物線的解析式;
(2)連接BE,求h為何值時,△BDE的面積最大;
(3)已知一定點M(﹣2,0).問:是否存在這樣的直線y=h,使△OMF是等腰三角形?若存在,請求出h的值和點G的坐標;若不存在,請說明理由.
【答案】(1) y=-x2-x+6.(2) 當h=3時,△BDE的面積最大,最大面積是.(3) 存在這樣的直線y=2或y=4,使△OMF是等腰三角形,當h=4時,點G的坐標為(-2,4);當h=2時,點G的坐標為(,2).
【解析】
(1)把點A、B的坐標分別代入拋物線解析式,列出關于系數(shù)a、b的解析式,通過解方程組求得它們的值即可得該拋物線所對應的函數(shù)關系式;
(2)求得點C的坐標,再求得直線BC的函數(shù)關系式,用h表示出DE的長,根據(jù)三角形的面積公式構造出以△BDE的面積和h為變量的二次函數(shù)模型,利用二次函數(shù)的性質求解即可;
(3)分OF=FM、OF=OM和FM=OM三種情況求解即可.
(1)∵ 拋物線y=ax2+bx+6經(jīng)過點A(-3,0)和點B(2,0),
∴
解得
∴ 該拋物線所對應的函數(shù)關系式為y=-x2-x+6.
(2)如圖,
∵ 拋物線y=-x2-x+6與y軸交于點C,∴ C(0,6).
設直線BC的函數(shù)關系式為y=k1x+b1,∴ y=-3x+6.
當y=h時,-3x+6=h,得,即.
∴ .
∴ 當h=3時,△BDE的面積最大.
(3)如圖2.2,設直線AC的函數(shù)關式為y=k2x+b2,
∴ y=2x+6.
當y=h時,2x+6=h,得,
∴ F(h-3,h),
∴ .
又∵ M(-2,0),
∴ OM2=4,FM2=(h-3+2)2+ h2=(h-1)2+ h2.
① 若OF=FM,則(h-3)2+ h2=(h-1)2+ h2,
解得h=4.
(另解:由等腰三角形“三線合一”,
∴-3=-1,得h=4.)
由-x2-x+6=4,解得x1=-2,x2=1(舍去),
∴ G(-2,4).
② 若OF=OM,則(h-3)2+ h2=4,方程無實數(shù)解.
③ 若FM=OM,則(h-1)2+ h2=4,解得h1=2,(舍去).
由-x2-x+6=2,解得,(舍去),
∴G(,2).
綜上所述,存在這樣的直線y=h,使△OFM是等腰三角形,此時h=4,G(-2,4)或h=2,G(,2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為的正方形ABCD中,G是AD延長線上的一點,且D為AG中點,動點M從A點出發(fā),以每秒1個單位的速度沿看A→C→G的路線向G點勻速運動(M不與A,G重合),設運動時間t秒,連接BM并延長交AG于N點.
(1)當t為何值時,△ABM為等腰三角形?
(2)當點N在AD邊上時,若DN⊥HN,NH交∠CDG的平分線于H,求證:BN=HN;
(3)過點M分別作AB,AD的垂線,垂足分別為E,F,矩形AEMF與△ACG重疊部分的面積為S,請直接寫出S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過A、B兩點,并與過A點的直線y=﹣x﹣1交于點C.
(1)求拋物線解析式及對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使四邊形ACPO的周長最。咳舸嬖,求出點P的坐標,若不存在,請說明理由;
(3)點M為y軸右側拋物線上一點,過點M作直線AC的垂線,垂足為N.問:是否存在這樣的點N,使以點M、N、C為頂點的三角形與△AOC相似,若存在,求出點N的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形中,是邊上一點(點不與點、重合),連結.如圖①,過點作交于點.易證.(不需要證明)如圖②,取的中點,過點作交于點,交于點.
(1)求證:.
(2)連結,若,求的長.
(3)如圖③,取的中點,連結.過點作交于點,于點,連結、.若,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過點,,對稱軸為直線,與軸的另一個交點為點.
(1)求拋物線的解析式;
(2)點從點出發(fā),沿向點運動,速度為1個單位長度/秒,同時點從點出發(fā),沿向點運動,速度為2個單位長度/秒,當點、有一點到達終點時,運動停止,連接,設運動時間為秒,當為何值時,的面積最大,并求出的最大值;
(3)點在軸上,點在拋物線上,是否存在點、,使得以點、、、為頂點的四邊形是平行四邊形,若存在,直接寫出所有符合條件的點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅的父母開了一個小服裝店,出售某種進價為元的服裝,現(xiàn)每件元,每星期可賣件.該同學對市場作了如下調查:每降價元,每星期可多賣件;每漲價元,每星期要少賣件.
小紅已經(jīng)求出在漲價情況下一個星期的利潤(元)與售價(元)(為整數(shù))的函數(shù)關系式為,請你求出在降價的情況下與的函數(shù)關系式;
在降價的條件下,問每件商品的售價定為多少時,一個星期的利潤恰好為元?
問如何定價,才能使一星期獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=x2﹣4x+m的圖象與y軸交于點C,點B是點C關于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點A(1,0)及點B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,直接寫出滿足kx+b≥x2﹣4x+m的x的取值范圍.
(3)在拋物線的對稱軸上是否存在一點P使得PA+PC最小,求P點坐標及最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解初中各年級學生每天的平均睡眠時間(單位:h,精確到1 h),抽樣調查了部分學生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,回答下列問題:
(1)求出扇形統(tǒng)計圖中百分數(shù)的值為_______,所抽查的學生人數(shù)為______;
(2)求出平均睡眠時間為8小時的人數(shù),并補全條形圖;
(3)求出這部分學生的平均睡眠時間的平均數(shù);
(4)如果該校共有學生1200名,請你估計睡眠不足(少于8小時)的學生數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點A(﹣1,0)、B兩點,與y軸交于點C(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)已知點P(m,n)在拋物線上,當﹣2≤m<3時,直接寫n的取值范圍;
(3)拋物線的對稱軸與x軸交于點M,點D與點C關于點M對稱,試問在該拋物線上是否存在點P,使△ABP與△ABD全等?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com