【題目】初三(1)班針對垃圾分類知曉情況對全班學生進行專題調查活動,對垃圾分類的知曉情況分為、、四類.其中,類表示非常了解,類表示比較了解類表示基本了解,類表示不太了解,每名學生可根據自己的情況任選其中一類,班長根據調查結果進行了統(tǒng)計,并繪制成了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

垃圾分類知曉情況各類別人數(shù)條形統(tǒng)計圖垃圾分類知曉情況各類別人數(shù)扇形統(tǒng)計圖

根據以上信息解決下列問題:

1)初三(1)班參加這次調查的學生有______人,扇形統(tǒng)計圖中類別所對應扇形的圓心角度數(shù)為______°;

2)求出類別的學生數(shù),并補全條形統(tǒng)計圖;

3)類別4名學生中有2名男生和2名女生,現(xiàn)從這4名學生中隨機選取2名學生參加學校垃圾分類知識競賽,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.

【答案】140,144;(2)類別的學生數(shù)為18,補全圖形見解析;(3

【解析】

1)由類人數(shù)及其所占百分比可得總人數(shù);再由C類人數(shù)所占百分比求出類別所對應扇形的圓心角度數(shù);

2)總人數(shù)減去、、的人數(shù)求得類別人數(shù),據此即可補全圖形;

3)列表得出所有等可能結果,再根據概率公式求解可得.

解:(1)調查學生總數(shù)=(人);

類別所對應扇形的圓心角度數(shù)= ,

故答案為: 40144;

2)類別的學生數(shù)=40-41640×5%=18人,

補全條形統(tǒng)計圖如圖.

3)列表如下:

第二次

第一次

1

2

1

2

1

_______

(男2,男1

(女1,男1

(女2,男1

2

(男1,男2

_______

(女1,男2

(女2,男2

1

(男1,女1

(男2,女1

_______

(女2,女1

2

(男1,女2

(男2,女2

(女1,女2

_______

(選取的2名學生中恰好有1名男生、1名女生)=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網格中,,為格點,為小正方形邊的中點.

1的長等于_________

2)點分別為線段,上的動點,當取得最小值時,請在如圖所示的網格中,用無刻度的直尺,畫出線段,并簡要說明點和點的位置是如何找到的(不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A1,A2,A3B1B2,B3,分別在直線yx+bx軸上.OA1B1,B1A2B2B2A3B3,都是等腰直角三角形如果點A11,1),那么點A2019的縱坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線y=x2+bx+c經過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).

(1)求拋物線的函數(shù)解析式;

(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;

(3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABAC,以AC為直徑的⊙OBC于點D,點EAC延長線上一點,且DE是⊙O的切線.

1)求證:∠CDE BAC;

2)若AB3BDCE4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸交于點左側),與軸正半軸交于點,點在拋物線上,軸,且

1)求點,的坐標及的值;

2)點軸右側拋物線上一點.

如圖,若平分,于點,求點的坐標;

如圖,拋物線上一點的橫坐標為2,直線軸于點,過點作直線的垂線,垂足為,若,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠用天時間生產一款新型節(jié)能產品,每天生產的該產品被某網店以每件元的價格全部訂購,在生產過程中,由于技術的不斷更新,該產品第天的生產成本(元/件)與(天)之間的關系如圖所示,第天該產品的生產量(件)與(天)滿足關系式

天,該廠生產該產品的利潤是   元;

設第天該廠生產該產品的利潤為元.

①求之間的函數(shù)關系式,并指出第幾天的利潤最大,最大利潤是多少?

②在生產該產品的過程中,當天利潤不低于元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=ax2+bx+ca0)的頂點為As,t)(其中s0).

1)若拋物線經過(2,7)和(-337)兩點,且s=1

①求拋物線的解析式;

②若n1,設點Mn,y1),Nn+1,y2)在拋物線上,比較y1y2的大小關系,并說明理由;

2)若a=2,c=-2,直線y=2x+m與拋物線y=ax2+bx+c的交于點P和點Q,點P的橫坐標為h,點Q的橫坐標為h+3,求出bh的函數(shù)關系式;

3)若點A在拋物線y=上,且2s3時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中放有三張卡片,每張卡片上寫有1個實數(shù),分別為12,3.(卡片除了實數(shù)不同外,其余均相同)

1)從盒子中隨機抽取一張卡片,請直接寫出卡片上的實數(shù)是2的概率_______

2)先從盒子中隨機抽取一張卡片,將卡片上的實數(shù)作為點P的橫坐標,卡片不放回,再隨機抽取一張卡片,將卡片上的實數(shù)作為點P的縱坐標,兩次抽取的卡片上的實數(shù)分別作為點P的橫縱坐標.請你用列表法或樹狀圖法,求出點P在反比例函數(shù)上的概率.

查看答案和解析>>

同步練習冊答案