【題目】計算:(π﹣3.14)0﹣| sin60°﹣4|+( 1

【答案】解::(π﹣3.14)0﹣| sin60°﹣4|+( 1=1﹣|2 × ﹣4|+2
=1﹣|﹣1|+2
=2.
【解析】本題涉及零指數(shù)冪、二次根式化簡、絕對值、特殊角的三角函數(shù)值四個考點.針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.
【考點精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)的相關知識點,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(12)(2017·黃岡)已知:如圖一次函數(shù)y=-2x1與反比例函數(shù)y的圖象有兩個交點A(1,m)B過點AAEx,垂足為E;過點BBDy垂足為點D,且點D的坐標為(0,-2),連結(jié)DE.

(1)k的值;

(2)求四邊形AEDB的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市水果批發(fā)部門欲將A市的一批水果運往本市銷售,有火車和汽車兩種運輸方式,運輸過程中的損耗均為200/時,其他主要參考數(shù)據(jù)如下:

運輸工具

途中平均速度

(千米/)

運費

(/千米)

裝卸費用

()

火車

100

15

2000

汽車

80

20

900

(1)如果選擇汽車的總費用比選擇火車的總費用多1100元,那么你知道本市與A市之間的路程是多少千米嗎?請你列方程解答;

(2)A市與某市之間的路程為s千米,且知道火車與汽車在路上耽誤的時間分別為2小時和3.1小時,要想將這批水果運往該市進行銷售,則當s為多少時,選擇火車和汽車運輸所需費用相同?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD線段AB、CD的中點EF之間距離是10cm,AB,CD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1先化簡,再求值:aa-2b+a+b2,其中a=-1b=;

2)若x2-5x=3,求(x-1)(2x-1-x+12+1的值.

【答案】1原式= 2a2+b2=2+2=4;(2原式=4.

【解析】試題分析:(1)利用完全平方公式展開,化簡,代入求值. (2) 利用完全平方公式展開,化簡,整體代入求值.

:(1原式=a2-2ab+a2+2ab+b2=2a2+b2.

a=-1,b=原式=2+2=4.

2原式=2x2-3x+1-x2+2x+1+1=x2-5x+1=3+1=4.

型】解答
結(jié)束】
22

【題目】已知化簡(x2+px+8)(x2-3x+q)的結(jié)果中不含x2項和x3.

1)求p,q的值.

2x2-2px+3q是否是完全平方式?如果是,請將其分解因式;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=k1x+7(k1<0)與x軸交于點A,與y軸交于點B,與反比例函數(shù)y= (k2>0)的圖象在第一象限交于C、D兩點,點O為坐標原點,△AOB的面積為 ,點C橫坐標為1.
(1)求反比例函數(shù)的解析式;
(2)如果一個點的橫、縱坐標都是整數(shù),那么我們就稱這個點為“整點”,請求出圖中陰影部分(不含邊界)所包含的所有整點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某天,小王去朋友家借書,在朋友家停留一段時間后,返回家中,如圖是他離家的路程 (千米)與時間 (分)關系的圖象,根據(jù)圖象信息,下列說法正確的是 ( )

A. 小王去時的速度大于回家的速度 B. 小王去時走上坡路,回家時走下坡路

C. 小王去時所花時間少于回家所花時間 D. 小王在朋友家停留了

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關系式;
(2)設點P是直線l上的一個動點,當點P到點A、點B的距離之和最短時,求點P的坐標;
(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如果-axym是關于x,y的單項式,且系數(shù)是4,次數(shù)是5,那么am的值分別是________;

(2)如果-(a-2)xym是關于x,y的五次單項式那么am應滿足的條件是____________;

(3)如果單項式2x3y4與-x2zn的次數(shù)相同,那么n=________.

查看答案和解析>>

同步練習冊答案