【題目】如圖,等邊△ABC,作它的外接圓⊙O,連接AO并延長(zhǎng)交⊙O于點(diǎn)D,交BC于點(diǎn)E,過點(diǎn)D作DF∥BC,交AC的延長(zhǎng)線于點(diǎn)F.
(1)依題意補(bǔ)全圖形并證明:DF與⊙O相切;
(2)若AB=6,求CF的長(zhǎng).
【答案】(1)見解析;(2)2
【解析】
(1)根據(jù)題意補(bǔ)全圖形,證明∠AEC=90°,,進(jìn)而證明∠ADF=90°,問題得證;
(2)連接,根據(jù)等邊三角形的性質(zhì)和直徑所對(duì)圓周角是直角先求出DC,再根據(jù)30°直角三角形性質(zhì)即可求出的長(zhǎng).
解:(1)如圖,
依題意補(bǔ)全圖形.
證明:∵△ABC是等邊三角形,
∴AB=AC,
∴,
∵AD過圓心O,
∴∠AEC=90°,
∵DF∥BC,
∴∠ADF=90°,
∴DF與⊙O相切.
(2)解:連接DC,
∵△ABC是等邊三角形,
∴AB=AC=BC=6,
∠BAC=60°,
∵AD⊥BC,
∴∠DAC=30°,
∵∠ADF=90°,
∴∠F=60°,
∵AD是直徑,
∴∠ACD=90°,
∴,
∵∠DCF=90°,∠F=60°,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB=5cm,∠BAM=90°,P是與∠BAM所圍成的圖形的外部的一定點(diǎn),C是上一動(dòng)點(diǎn),連接PC交弦AB于點(diǎn)D.設(shè)A,D兩點(diǎn)間的距離為xcm,P,D兩點(diǎn)間的距離為y1cm,P,C兩點(diǎn)間的距離為y2cm.小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小騰的探究過程,請(qǐng)補(bǔ)充完整:
按照表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了y1,y2與x的幾組對(duì)應(yīng)值:
x/cm | 0.00 | 1.00 | 1.56 | 1.98 | 2.50 | 3.38 | 4.00 | 4.40 | 5.00 |
y1/cm | 2.75 | 3.24 | 3.61 | 3.92 | 4.32 | 5.06 | 5.60 | 5.95 | 6.50 |
y2/cm | 2.75 | 4.74 | 5.34 | 5.66 | 5.94 | 6.24 | 6.37 | 6.43 | 6.50 |
(1)在同一平面直角坐標(biāo)系xOy中,畫出各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象;
(2)連接BP,結(jié)合函數(shù)圖象,解決問題:當(dāng)△BDP為等腰三角形時(shí),x的值約為_____cm(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過點(diǎn)A(3,1),點(diǎn)B(0,4).
(1)求該二次函數(shù)的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)點(diǎn)C(m,n)在該二次函數(shù)圖象上.
①當(dāng)m=﹣1時(shí),求n的值;
②當(dāng)m≤x≤3時(shí),n最大值為5,最小值為1,請(qǐng)根據(jù)圖象直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,直線,所成的角跑到畫板外面去了,你有什么辦法作出這兩條直線所成角的角平分線?
小明的做法是:
(1)如圖2,畫;
(2)以為圓心,任意長(zhǎng)為半徑畫圓弧,分別交直線,于點(diǎn),;
(3)連結(jié)并延長(zhǎng)交直線于點(diǎn);
請(qǐng)你先完成下面的證明,然后完成第(4)步作圖:
∵
∴( )
∵以為圓心,任意長(zhǎng)為半徑畫圓弧,分別交直線,于點(diǎn),
∴
∴
∴
∴以直線,的交點(diǎn)和點(diǎn)、為頂點(diǎn)所構(gòu)成的三角形為等腰三角形( )
根據(jù)上面的推理證明完成第(4)步作圖
(4)請(qǐng)?jiān)趫D2畫板內(nèi)作出“直線,所成的跑到畫板外面去的角”的平分線(畫板內(nèi)的部分),尺規(guī)作出圖形,并保留作圖痕跡.
第(4)步這么作圖的理論依據(jù)是: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P,Q,給出如下定義:若P,Q為某個(gè)三角形的頂點(diǎn),且邊PQ上的高h,滿足h=PQ,則稱該三角形為點(diǎn)P,Q的“生成三角形”.
(1)已知點(diǎn)A(4,0);
①若以線段OA為底的某等腰三角形恰好是點(diǎn)O,A的“生成三角形”,求該三角形的腰長(zhǎng);
②若Rt△ABC是點(diǎn)A,B的“生成三角形”,且點(diǎn)B在x軸上,點(diǎn)C在直線y=2x﹣5上,則點(diǎn)B的坐標(biāo)為 ;
(2)⊙T的圓心為點(diǎn)T(2,0),半徑為2,點(diǎn)M的坐標(biāo)為(2,6),N為直線y=x+4上一點(diǎn),若存在Rt△MND,是點(diǎn)M,N的“生成三角形”,且邊ND與⊙T有公共點(diǎn),直接寫出點(diǎn)N的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=BC,∠ABC=90°,將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)得到線段AD.作射線BD,點(diǎn)C關(guān)于射線BD的對(duì)稱點(diǎn)為點(diǎn)E.連接AE,CE.
(1)依題意補(bǔ)全圖形;
(2)若α=20°,直接寫出∠AEC的度數(shù);
(3)寫出一個(gè)α的值,使AE=時(shí),線段CE的長(zhǎng)為﹣1,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象與一次函數(shù)y=2x﹣1的圖象交于A、B兩點(diǎn),已知A(m,﹣3).
(1)求k及點(diǎn)B的坐標(biāo);
(2)若點(diǎn)C是y軸上一點(diǎn),且S△ABC=5,直接寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)圓上所有的點(diǎn)都在一個(gè)角的內(nèi)部或邊上,那么稱這個(gè)圓為該角的角內(nèi)圓.特別地,當(dāng)這個(gè)圓與角的至少一邊相切時(shí),稱這個(gè)圓為該角的角內(nèi)相切圓.在平面直角坐標(biāo)系xOy中,點(diǎn)E,F分別在x軸的正半軸和y軸的正半軸上.
(1)分別以點(diǎn)A(1,0),B(1,1),C(3,2)為圓心,1為半徑作圓,得到⊙A,⊙B和⊙C,其中是∠EOF的角內(nèi)圓的是 ;
(2)如果以點(diǎn)D(t,2)為圓心,以1為半徑的⊙D為∠EOF的角內(nèi)圓,且與直線y=x有公共點(diǎn),求t的取值范圍;
(3)點(diǎn)M在第一象限內(nèi),如果存在一個(gè)半徑為1且過點(diǎn)P(2,2)的圓為∠EMO的角內(nèi)相切圓,直接寫出∠EOM的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,四邊形OABC為菱形,OA在x軸的正半軸上,∠AOC=60°,過點(diǎn)C的反比例函數(shù)的圖象與AB交于點(diǎn)D,則△COD的面積為( 。
A.B.C.4D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com