【題目】已知:如圖,線段AB5cm,∠BAM90°,P與∠BAM所圍成的圖形的外部的一定點(diǎn),C上一動(dòng)點(diǎn),連接PC交弦AB于點(diǎn)D.設(shè)A,D兩點(diǎn)間的距離為xcm,P,D兩點(diǎn)間的距離為y1cm,P,C兩點(diǎn)間的距離為y2cm.小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小騰的探究過程,請(qǐng)補(bǔ)充完整:

按照表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y1,y2x的幾組對(duì)應(yīng)值:

x/cm

0.00

1.00

1.56

1.98

2.50

3.38

4.00

4.40

5.00

y1/cm

2.75

3.24

3.61

3.92

4.32

5.06

5.60

5.95

6.50

y2/cm

2.75

4.74

5.34

5.66

5.94

6.24

6.37

6.43

6.50

1)在同一平面直角坐標(biāo)系xOy中,畫出各組數(shù)值所對(duì)應(yīng)的點(diǎn)(xy1),(xy2),并畫出函數(shù)y1,y2的圖象;

2)連接BP,結(jié)合函數(shù)圖象,解決問題:當(dāng)△BDP為等腰三角形時(shí),x的值約為_____cm(結(jié)果保留一位小數(shù)).

【答案】1)見解析;(21.5

【解析】

1)利用描點(diǎn)法會(huì)產(chǎn)生圖象即可.

2)根據(jù)等腰三角形性質(zhì),函數(shù)y1與直線y=﹣x+5的交點(diǎn)T的橫坐標(biāo),即為x的值.

解:(1)函數(shù)圖象如圖所示:

2)∵△BDP是等腰三角形,

DBDP,

AD+PDAD+BD5,

∴函數(shù)y1與直線y=﹣x+5的交點(diǎn)T的橫坐標(biāo),即為x的值,

觀察圖象可知x1.5,

故答案為1.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,CDABC的中線,如果上的所有點(diǎn)都在ABC的內(nèi)部或邊上,則稱ABC的中線。

1)在Rt△ABC中,ACB90°AC1,DAB的中點(diǎn).

如圖1,若A45°,畫出ABC的一條中線弧,直接寫出ABC的中線弧所在圓的半徑r的最小值;

如圖2,若A60°,求出ABC的最長的中線弧的弧長l

2)在平面直角坐標(biāo)系中,已知點(diǎn)A2,2),B40),C0,0),在ABC中,DAB的中點(diǎn).求ABC的中線弧所在圓的圓心P的縱坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C為平面內(nèi)不在同一直線上的三點(diǎn).點(diǎn)D為平面內(nèi)一個(gè)動(dòng)點(diǎn).線段ABBC,CDDA的中點(diǎn)分別為M,N,P,Q.在點(diǎn)D的運(yùn)動(dòng)過程中,有下列結(jié)論:存在無數(shù)個(gè)中點(diǎn)四邊形MNPQ是平行四邊形;存在無數(shù)個(gè)中點(diǎn)四邊形MNPQ是菱形;存在無數(shù)個(gè)中點(diǎn)四邊形MNPQ是矩形;存在兩個(gè)中點(diǎn)四邊形MNPQ是正方形.所有正確結(jié)論的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線yx+3與函數(shù)yx0)的圖象交于點(diǎn)A1m),與x軸交于點(diǎn)B

1)求m,k的值;

2)過動(dòng)點(diǎn)P0,n)(n0)作平行于x軸的直線,交函數(shù)yx0)的圖象于點(diǎn)C,交直線yx+3于點(diǎn)D

①當(dāng)n2時(shí),求線段CD的長;

②若CDOB,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】眾志成城,抗擊疫情,救助重災(zāi)區(qū).某校某小組7名同學(xué)積極捐出自己的零花錢支援災(zāi)區(qū),他們捐款的數(shù)額分別是(單位:元):100,45,100,40,100,60155.下面有四個(gè)推斷:

7名同學(xué)所捐的零花錢的平均數(shù)是150;

7名同學(xué)所捐的零花錢的中位數(shù)是100;

7名同學(xué)所捐的零花錢的眾數(shù)是100

由這7名同學(xué)所捐的零花錢的中位數(shù)是100,可以推斷該校全體同學(xué)所捐的零花錢的中位數(shù)也一定是100

所有合理推斷的序號(hào)是(

A.①③B.②③C.②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDCADBC,AB10,CD4DMAB于點(diǎn)M.連接BD并延長到E,使DEBD,作EFAB,交BA的延長線于點(diǎn)F

1)求MB的長;

2)求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201911月,胡潤研究院攜手知識(shí)產(chǎn)權(quán)與科創(chuàng)云平臺(tái)匯桔,聯(lián)合發(fā)布《IP助燃AI新紀(jì)元﹣2019中國人工智能產(chǎn)業(yè)知識(shí)產(chǎn)權(quán)發(fā)展白皮書》,白皮書公布了2019中國人工智能企業(yè)知識(shí)產(chǎn)權(quán)競爭力百強(qiáng)榜,對(duì)500余家中國人工智能主流企業(yè)進(jìn)行定量評(píng)估(滿分100分),前三名分別為:華為、騰訊、百度.對(duì)得分由高到低的前41家企業(yè)的有關(guān)數(shù)據(jù)進(jìn)行收集、整理、描述和分析.下面給出了部分信息:

a.得分的頻數(shù)分布直方圖:

(數(shù)據(jù)分成8組:60≤x65,65≤x7070≤x75,75≤x8080≤x85,85≤x90,90≤x95,95≤x≤100,)

b.知識(shí)產(chǎn)權(quán)競爭力得分在70≤x75這一組的是:70.3,71.672.1,72.5,74.1

c41家企業(yè)注冊所在城市分布圖(不完整)如圖:(結(jié)果保留一位小數(shù))

d.漢王科技股份有限公司的知識(shí)產(chǎn)權(quán)競爭力得分是70.3

(以上數(shù)據(jù)來源于《IP助燃AI新紀(jì)元﹣2019中國人工智能產(chǎn)業(yè)知識(shí)產(chǎn)權(quán)發(fā)展白皮書》)

根據(jù)以上信息,回答下列問題:

1)漢王科技股份有限公司的知識(shí)產(chǎn)權(quán)競爭力得分排名是第   ;

2)百度在人工智能領(lǐng)域取得諸多成果,尤其在智能家居、自動(dòng)駕駛與服務(wù)于企業(yè)的智能云領(lǐng)域,百度都已進(jìn)行前瞻布局,請(qǐng)你估計(jì)百度在本次排行榜中的得分大概是   ;

3)在41家企業(yè)注冊所在城市分布圖中,m   ,請(qǐng)用陰影標(biāo)出代表上海的區(qū)域;

4)下列推斷合理的是   .(只填序號(hào))

①前41家企業(yè)的知識(shí)產(chǎn)權(quán)競爭力得分的中位數(shù)應(yīng)在65≤x70這一組中,眾數(shù)在65≤x70這一組的可能性最大;

②前41家企業(yè)分布于我國8個(gè)城市.人工智能產(chǎn)業(yè)的發(fā)展聚集于經(jīng)濟(jì)、科技、教育相對(duì)發(fā)達(dá)的城市,一線城市中,北京的優(yōu)勢尤其突出,貢獻(xiàn)榜單過半的企業(yè),充分體現(xiàn)北京在人工智能領(lǐng)域的產(chǎn)業(yè)集群優(yōu)勢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年,由于“疫情”的原因,學(xué)校未能準(zhǔn)時(shí)開學(xué),某中學(xué)為了了解學(xué)生在家“課間”活動(dòng)情況,在七、八、九年級(jí)的學(xué)生中,分別抽取了相同數(shù)量的學(xué)生對(duì)“你最喜歡的運(yùn)動(dòng)項(xiàng)目”在線進(jìn)行調(diào)查(每人只能選一項(xiàng)),調(diào)查結(jié)果的部分?jǐn)?shù)據(jù)如下表(圖)所示,其中七年級(jí)最喜歡跳繩的人數(shù)比八年級(jí)多5人,九年級(jí)最喜歡排球的人數(shù)為10人.

七年級(jí)學(xué)生最喜歡的運(yùn)動(dòng)項(xiàng)目人數(shù)統(tǒng)計(jì)表

項(xiàng)目

排球

籃球

踢毽

跳繩

其他

人數(shù)(人)

7

8

14

6

請(qǐng)根據(jù)以上統(tǒng)計(jì)表(圖)解答下列問題:

1)本次調(diào)查共抽取的人數(shù)為 人;

2)請(qǐng)直接補(bǔ)全統(tǒng)計(jì)表和統(tǒng)計(jì)圖;

3)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)該校1500名學(xué)生中有多少名學(xué)生最喜歡踢毽子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC,作它的外接圓⊙O,連接AO并延長交⊙O于點(diǎn)D,交BC于點(diǎn)E,過點(diǎn)DDFBC,交AC的延長線于點(diǎn)F

1)依題意補(bǔ)全圖形并證明:DF與⊙O相切;

2)若AB6,求CF的長.

查看答案和解析>>

同步練習(xí)冊答案