【題目】在△ABC中,∠ACB=90°,D是AB邊上一點(diǎn),以BD為直徑的⊙O與邊AC有公共點(diǎn)E,連結(jié)DE并延長(zhǎng),與BC的延長(zhǎng)線交于點(diǎn)F ,BD=BF.
(1)求證:AC是⊙O的切線;
(2)若∠F=60°,BF=8,求CF的長(zhǎng).
【答案】(1)詳見解析;(2)CF=2.
【解析】
(1)連接連接BE,OE,根據(jù)直徑所對(duì)的角為直角結(jié)合等腰三角形三線合一的性質(zhì)可證得DE=EF,根據(jù)三角形中位線定理可推出OE∥BC,得出OE⊥AC,即可證明結(jié)論;
(2)利用三角形中位線定理可求得半徑OE的長(zhǎng),利用含30度角的直角三角形的性質(zhì)可求得OA進(jìn)而求得AB,即可求得BC的長(zhǎng),從而得解.
(1)連接BE,OE,
∵BD是直徑,
∴∠DEB=90°,
∴BE⊥DF,
∵BD=BF,
∴DE=EF,
又∵DO=OB,
∴OE∥BF,
∵∠ACB=90°,
∴∠OEA=∠ACB =90°,
∴OE⊥AC,
∴AC是圓O的切線;
(2)∵BD=BF,∠F=60°,
∴△DBF為等邊三角形,
∴∠ABC=60°,
∴∠A=∠ACB-∠ABC =90°-60°=30°,
∵DE=EF,DO=OB,
∴OE=,
在中,∠OEA =90°,∠A=30°,
∴AO=2OE=8,
∴AB= AO +OB= AO +OE= 8 +4=12,
在中,∠ACB =90°,∠A=30°,
∴BC==6,
∴CF=BF-BC=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于,兩點(diǎn),交軸于點(diǎn),連接,點(diǎn)為拋物線上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)到直線的距離為時(shí),求點(diǎn)的橫坐標(biāo);
(3)當(dāng)和的面積相等時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點(diǎn)P是y=的圖象上一動(dòng)點(diǎn),PC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)B.給出如下結(jié)論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會(huì)發(fā)生變化;④CA=AP.其中所有正確結(jié)論的序號(hào)是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以平行四邊形ABCD的較短邊CD為一邊作菱形CDEF,使點(diǎn)F落在邊AD上,連接BE,交AF于點(diǎn)G,延長(zhǎng)DE,BA交于點(diǎn)H,若∠ADC=60°,則=________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為⊙O直徑,作⊙O的內(nèi)接正三角形ABC,下列作法錯(cuò)誤的是( )
A.作OD的中垂線,交⊙O于B,C,連結(jié)AB,AC;
B.以D點(diǎn)為圓心,OD長(zhǎng)為半徑作圓弧,交圓于點(diǎn)B,C,連結(jié)AB, BC,CA;
C.以A點(diǎn)為圓心,AO長(zhǎng)為半徑作圓弧,交圓于點(diǎn)E,F,再分別以E,F為圓心,AO長(zhǎng)為半徑作圓弧,交圓于不同于點(diǎn)A的兩點(diǎn)B,C,連結(jié)AB,BC,CA
D.作AD的中垂線,交⊙O于B,C,連結(jié)AB,AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn)叫作整點(diǎn),函數(shù)y=的圖象上的整點(diǎn)的個(gè)數(shù)是( )
A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 8個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與應(yīng)用:同學(xué)們,你們已經(jīng)知道,即.所以(當(dāng)且僅當(dāng)時(shí)取等號(hào)).
閱讀1:若為實(shí)數(shù),且(當(dāng)且僅當(dāng)時(shí)取等號(hào)).
閱讀2:若函數(shù)(,,為常數(shù)).由閱讀1結(jié)論可知:即,∴當(dāng)即時(shí),函數(shù)的最小值為.
閱讀理解上述內(nèi)容,解答下列問題:
問題1:若函數(shù),則= 時(shí),函數(shù)的最小值為 .
問題2:已知一個(gè)矩形的面積為4,其中一邊長(zhǎng)為,則另一邊長(zhǎng)為,周長(zhǎng)為,求當(dāng) 時(shí),矩形周長(zhǎng)的最小值為 .
問題3:求代數(shù)式的最小值.
問題4:建造一個(gè)容積為8立方米,深2米的長(zhǎng)方體無蓋水池,池底和池壁的造價(jià)分別為每平方米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,已知AB=6,BE平分∠ABC交AD邊于點(diǎn)E,點(diǎn)E將AD分為1:3兩部分,則AD的長(zhǎng)為( 。
A. 8或24B. 8C. 24D. 9或24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】表示以為自變量的函數(shù),則表示當(dāng)時(shí)函數(shù)的值.例如,一次函數(shù)記作,當(dāng)時(shí),函數(shù)值.現(xiàn)給出新定義:對(duì)于函數(shù),若存在實(shí)數(shù),使得成立,則稱點(diǎn)是函數(shù)的“奇妙點(diǎn)”.
(1)求函數(shù)的“奇妙點(diǎn)”;
(2)當(dāng)為何值時(shí),函數(shù)存在“奇妙點(diǎn)”?
(3)若二次函數(shù)有且只有一個(gè)“奇妙點(diǎn)”,其圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),是軸上一動(dòng)點(diǎn).當(dāng)的周長(zhǎng)最短時(shí),求點(diǎn)的坐標(biāo)及的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com