【題目】如圖所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,則PD等于(

A.4
B.3
C.2
D.1

【答案】C
【解析】解:如圖:過點P做PM∥CO交AO于M,PM∥CO
∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA
∴四邊形COMP為菱形,PM=4
PM∥CO∠PMD=∠AOP+∠BOP=30°,
又∵PD⊥OA
∴PD= PC=2.
令解:作CN⊥OA.
∴CN= OC=2,
又∵∠CNO=∠PDO,
∴CN∥PD,
∵PC∥OD,
∴四邊形CNDP是長方形,
∴PD=CN=2
故選:C.

【考點精析】掌握含30度角的直角三角形是解答本題的根本,需要知道在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列分解因式正確的是(
A.﹣a+a3=﹣a(1+a2
B.2a﹣4b+2=2(a﹣2b)
C.a2﹣4=(a﹣2)2
D.a2﹣2a+1=(a﹣1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABE和△ADC是△ABC分別沿著AB,AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為(

A.80°
B.100°
C.60°
D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=(x+1)2+2的對稱軸為(
A.直線x=1
B.直線y=1
C.直線y=﹣1
D.直線x=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛在解關(guān)于x的方程ax+bx+c0a≠0)時,只抄對了a1,b4,解出其中一個根是x=﹣1.他核對時發(fā)現(xiàn)所抄的c比原方程的c值小2.則原方程的根的情況是( 

A. 不存在實數(shù)根B. 有兩個不相等的實數(shù)根

C. 有一個根是x=﹣1D. 有兩個相等的實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,是中心對稱圖形但不是軸對稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任意拋擲一枚骰子兩次,骰子停止轉(zhuǎn)動后,計算朝上的點數(shù)的和.
(1)和最小的是多少,和最大的是多少?
(2)下列事件:①點數(shù)的和為7;②點數(shù)的和為1;③點數(shù)的和為15.哪些是不可能性事件?哪些是不確定事件?
(3)點數(shù)的和為7與點數(shù)的和為2的可能性誰大?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】盤錦市雙臺子區(qū)為了了解2016年初中畢業(yè)生畢業(yè)后的去向,對部分初三學(xué)生進(jìn)行了抽樣調(diào)查,就初三學(xué)生的四種去向:A.讀普通高中;B.讀職業(yè)高中C.直接進(jìn)入社會就業(yè);D.其它;進(jìn)行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(a)、(b).請問:

(1)該縣共調(diào)查了______名初中畢業(yè)生;

(2)將兩幅統(tǒng)計圖中不完整的部分補(bǔ)充完整;

(3)若雙臺子區(qū)2016年初三畢業(yè)生共有4500人,請估計雙臺子區(qū)今年的初三畢業(yè)生中讀普通高中的學(xué)生人數(shù).

(4)老師想從甲、乙、丙、丁4位同學(xué)中隨機(jī)選擇兩位同學(xué)了解他們畢業(yè)后的去向情況,請用樹狀圖或列表法求選中甲同學(xué)的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果|a|=|b|,那么a,b兩個實數(shù)一定是(
A.都等于0
B.一正一負(fù)
C.相等
D.相等或互為相反數(shù)

查看答案和解析>>

同步練習(xí)冊答案