【題目】如圖,△ACB和△DCE均為等腰三角形,點A,D,E在同一直線上,連接BE.
(1)如圖1,若∠CAB=∠CBA=∠CDE=∠CED=50°
①求證:AD=BE;
②求∠AEB的度數(shù).
(2)如圖2,若∠ACB=∠DCE=120°,CM為△DCE中DE邊上的高,BN為△ABE中AE邊上的高,試證明:AE=CM+BN.
【答案】(1)①證明見解析;②80°;(2)證明見解析.
【解析】
試題分析:(1)①通過角的計算找出∠ACD=∠BCE,再結合△ACB和△DCE均為等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可證出△ACD≌△BCE,由此即可得出結論AD=BE;
②結合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通過角的計算即可算出∠AEB的度數(shù);
(2)根據(jù)等腰三角形的性質結合頂角的度數(shù),即可得出底角的度數(shù),利用(1)的結論,通過解直角三角形即可求出線段AD、DE的長度,二者相加即可證出結論.
試題解析:(1)①證明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.
∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.
∵△ACB和△DCE均為等腰三角形,∴AC=BC,DC=EC.
在△ACD和△BCE中,∵AC=BC,∠ACD=∠BCE,DC=EC,∴△ACD≌△BCE(SAS),∴AD=BE.
②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.
∵點A,D,E在同一直線上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.
∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.
(2)證明:∵△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.
∵CM⊥DE,∴∠CMD=90°,DM=EM.
在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=CM.
∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.
在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.
∵AD=BE,AE=AD+DE,∴AE=BE+DE=CM+BN.
科目:初中數(shù)學 來源: 題型:
【題目】如圖4所示,△ABE和△ADC是△ABC分別沿著AB,AC邊翻折180°形成的,
若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)是 ( )
A. 80° B. 100° C. 60° D. 45°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀下列解題過程:
計算: .
解:原式=(-15) (-)×6(第一步)
=(-15) (-25) (第二步)
=- (第三步)
解答問題:①上面解答過程有兩個錯誤,第一處是第 步,錯誤的原因是 ;第二處是第 步,錯誤的原因是 ;
②請你正確地解答本題.
(2)有道題目“當a= 2,b= -2017時,求代數(shù)式的值”.甲同學做題時把b=-2017錯抄成b=2017,乙同學沒有抄錯,但他們得出的結果恰好一樣,問這是怎么回事兒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年,山西省經濟發(fā)展由“疲”轉“興”,經濟增長步入合理區(qū)間,各項社會事業(yè)發(fā)展取得顯著成績,全面建成小康社會邁出嶄新步伐.2018年經濟總體保持平穩(wěn),第一季度山西省地區(qū)生產總值約為3122億元,比上年增長6.2%.數(shù)據(jù)3122億元用科學記數(shù)法表示為( 。
A. 3122×10 8元 B. 3.122×10 3元
C. 3122×10 11 元 D. 3.122×10 11 元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出下列說法:
①在直角三角形ABC中,已知兩邊長為3和4,則第三邊長為5;
②三角形的三邊a、b、c滿足+=,則C=90;
③△ABC中,若A: B: C=1:5:6,則△ABC是直角三角形;
④△ABC中,若a:b:c=1:2: ,則這個三角形是直角三角形。
其中,錯誤的說法的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1,1.21,1.44,正放置的四個正方形的面積為S1、S2、S3、S4,則S1+2S2+2S3+S4= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點M(x,y)在第四象限,且|x|=2,|y|=2,則點M的坐標是( 。
A.(﹣2,2)
B.(2,﹣2)
C.(2,2)
D.(﹣2,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,紙上有五個邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個正方形.
(1)拼成的正方形的面積為 ,邊長為 .
(2)如圖2,以數(shù)軸的單位長度的線段為邊作一個直角三角形,以數(shù)軸上表示 的﹣1點為圓心,直角三角形的最大邊為半徑畫弧,交數(shù)軸正半軸于點A,那么點A表示的數(shù)是 .
(3)如圖3,網格中每個小正方形的邊長為1,若把陰影部分剪拼成一個正方形,那么新正方形的邊長是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com