【題目】已知A、B分別在射線(xiàn)CM、CN(不含端點(diǎn)C)上運(yùn)動(dòng),∠MCN= π,在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c.
(Ⅰ)若a、b、c依次成等差數(shù)列,且公差為2.求c的值;
(Ⅱ)若c= ,∠ABC=θ,試用θ表示△ABC的周長(zhǎng),并求周長(zhǎng)的最大值.
【答案】解:(Ⅰ)∵a、b、c成等差,且公差為2,∴a=c﹣4、b=c﹣2. 又∵ , ,
∴ ,∴ ,
恒等變形得 c2﹣9c+14=0,解得c=7,或c=2.
又∵c>4,∴c=7.…(6分)
(Ⅱ)在△ABC中,由正弦定理可得 ,
∴ ,AC=2sinθ, .
∴△ABC的周長(zhǎng)f(θ)=|AC|+|BC|+|AB|=
= = ,
又∵ ,∴ ,
∴當(dāng) ,即 時(shí),f(θ)取得最大值
【解析】(Ⅰ)由題意可得 a=c﹣4、b=c﹣2.又因 , ,可得 ,恒等變形得 c2﹣9c+14=0,再結(jié)合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=2sinθ, .△ABC的周長(zhǎng)f(θ)=|AC|+|BC|+|AB|= .再由 ,利用正弦函數(shù)的定義域和值域,求得f(θ)取得最大值.
【考點(diǎn)精析】關(guān)于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:;;才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標(biāo)系中兩點(diǎn),其中m為常數(shù),且m>0,E(0,n)為y軸上一動(dòng)點(diǎn),以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫(huà)射線(xiàn)OA,把△ADC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線(xiàn)y=ax2+bx+n(a≠0)過(guò)E,A′兩點(diǎn).
(1)填空:∠AOB= °,用m表示點(diǎn)A′的坐標(biāo):A′( , );
(2)當(dāng)拋物線(xiàn)的頂點(diǎn)為A′,拋物線(xiàn)與線(xiàn)段AB交于點(diǎn)P,且=時(shí),△D′OE與△ABC是否相似?說(shuō)明理由;
(3)若E與原點(diǎn)O重合,拋物線(xiàn)與射線(xiàn)OA的另一個(gè)交點(diǎn)為點(diǎn)M,過(guò)M作MN⊥y軸,垂足為N:
①求a,b,m滿(mǎn)足的關(guān)系式;
②當(dāng)m為定值,拋物線(xiàn)與四邊形ABCD有公共點(diǎn),線(xiàn)段MN的最大值為10,請(qǐng)你探究a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=4,當(dāng)n≥2時(shí),an﹣1an﹣4an﹣1+4=0,數(shù)列{bn}滿(mǎn)足bn=
(1)求證:數(shù)列{bn}是等差數(shù)列,并求{bn}的通項(xiàng)公式;
(2)若cn=4bn(nan﹣6),如果對(duì)任意n∈N* , 都有cn+ t≤2t2 , 求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為 ,過(guò)左焦點(diǎn)F且垂直于x軸的直線(xiàn)與橢圓C相交,所得弦長(zhǎng)為1,斜率為k(k≠0)的直線(xiàn)l過(guò)點(diǎn)(1,0),且與橢圓C相交于不同的兩點(diǎn)A,B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)在x軸上是否存在點(diǎn)M,使得無(wú)論k取何值, 為定值?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面ABCD⊥平面ADEF,AB⊥AD,CD⊥AD,且AB=1,AD=CD=2,ADEF是正方形,在正方形ADEF內(nèi)部有一點(diǎn)M,滿(mǎn)足MB、MC與平面ADEF所成的角相等,則點(diǎn)M的軌跡長(zhǎng)度為( )
A.
B.
C.
D. π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,2),點(diǎn)M的極坐標(biāo)為 ,若直線(xiàn)l過(guò)點(diǎn)P,且傾斜角為 ,圓C以M為圓心,3為半徑. (Ⅰ)求直線(xiàn)l的參數(shù)方程和圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線(xiàn)l與圓C相交于A,B兩點(diǎn),求|PA||PB|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:(x+cosθ)2+(y﹣sinθ)2=1,直線(xiàn)l:y=kx.給出下面四個(gè)命題: ①對(duì)任意實(shí)數(shù)k和θ,直線(xiàn)l和圓M有公共點(diǎn);
②對(duì)任意實(shí)數(shù)k,必存在實(shí)數(shù)θ,使得直線(xiàn)l和圓M相切;
③對(duì)任意實(shí)數(shù)θ,必存在實(shí)數(shù)k,使得直線(xiàn)l和圓M相切;
④存在實(shí)數(shù)k和θ,使得圓M上有一點(diǎn)到直線(xiàn)l的距離為3.
其中正確的命題是(寫(xiě)出所以正確命題的編號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為ρ2﹣2ρcosθ﹣4=0
(1)若直線(xiàn)l與曲線(xiàn)C沒(méi)有公共點(diǎn),求m的取值范圍;
(2)若m=0,求直線(xiàn)l被曲線(xiàn)C截得的弦長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com