在等邊△ABC的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動時(shí),BM、NC、MN之間的數(shù)量關(guān)系及△AMN的周長Q與等邊△ABC的周長L的關(guān)系.
(1)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是(    );此時(shí)=(    );
(2)如圖2,點(diǎn)M、N邊AB、AC上,且當(dāng)DM?DN時(shí),猜想(1)問的兩個(gè)結(jié)論還成立嗎?寫出你的猜想并加以證明;
(3)如圖3,當(dāng)M、N分別在邊AB、CA的延長線上時(shí),若AN=x,則Q=(    )(用x、L表示).
解:(1)如圖,BM、NC、MN之間的數(shù)量關(guān)系BM+NC=MN.此時(shí)
(2)猜想:結(jié)論仍然成立.
證明:如圖,延長AC至E,使CE=BM,連接DE.
∵BD=CD,且∠BDC=120°,
∴∠DBC=∠DCB=30°.
又△ABC是等邊三角形,
∴∠MBD=∠NCD=90°.
在△MBD與△ECD中:
∴△MBD≌△ECD(SAS).
∴DM=DE,∠BDM=∠CDE.
∴∠EDN=∠BDC﹣∠MDN=60°.
在△MDN與△EDN中:,
∴△MDN≌△EDN(SAS).
∴MN=NE=NC+BM.
△AMN的周長Q
=AM+AN+MN
=AM+AN+(NC+BM)
=(AM+BM)+(AN+NC)
=AB+AC
=2AB.
而等邊△ABC的周長L=3AB.

(3)如圖,當(dāng)M、N分別在AB、CA的延長線上時(shí),若AN=x,
則Q=2x+(用x、L表示).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在等邊△ABC的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動時(shí),BM、NC、MN之間的數(shù)量關(guān)系及△AMN的周長Q與等邊△ABC的周長L的關(guān)系.
精英家教網(wǎng)
(1)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是
 
;此時(shí)
QL
=
 
;
(2)如圖2,點(diǎn)M、N邊AB、AC上,且當(dāng)DM≠DN時(shí),猜想(1)問的兩個(gè)結(jié)論還成立嗎?寫出你的猜想并加以證明;
(3)如圖3,當(dāng)M、N分別在邊AB、CA的延長線上時(shí),若AN=x,則Q=
 
(用x、L表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在等邊△ABC的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動時(shí),BM、NC、MN之間的數(shù)量關(guān)系及△AMN的周長Q與等邊△ABC的周長L的關(guān)系.
(1)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是
 
; 此時(shí)
QL
=
 
;
(2)如圖2,點(diǎn)M、N在邊AB、AC上,且當(dāng)DM≠DN時(shí),猜想( I)問的兩個(gè)結(jié)論還成立嗎?若成立請直接寫出你的結(jié)論;若不成立請說明理由.
(3)如圖3,當(dāng)M、N分別在邊AB、CA的延長線上時(shí),探索BM、NC、MN之間的數(shù)量關(guān)系如何?并給出證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在等邊△ABC的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動時(shí),BM、NC、MN之間的數(shù)量關(guān)系及△AMN的周長Q與等邊△ABC的周長L的關(guān)系.

(1)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是______;此時(shí)數(shù)學(xué)公式=______;
(2)如圖2,點(diǎn)M、N邊AB、AC上,且當(dāng)DM≠DN時(shí),猜想(1)問的兩個(gè)結(jié)論還成立嗎?寫出你的猜想并加以證明;
(3)如圖3,當(dāng)M、N分別在邊AB、CA的延長線上時(shí),若AN=x,則Q=______(用x、L表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初三數(shù)學(xué)圓及旋轉(zhuǎn)題庫 第2講:旋轉(zhuǎn)的應(yīng)用(解析版) 題型:解答題

在等邊△ABC的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動時(shí),BM、NC、MN之間的數(shù)量關(guān)系及△AMN的周長Q與等邊△ABC的周長L的關(guān)系.

(1)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是______;此時(shí)=______;
(2)如圖2,點(diǎn)M、N邊AB、AC上,且當(dāng)DM≠DN時(shí),猜想(1)問的兩個(gè)結(jié)論還成立嗎?寫出你的猜想并加以證明;
(3)如圖3,當(dāng)M、N分別在邊AB、CA的延長線上時(shí),若AN=x,則Q=______(用x、L表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市崇文區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•崇文區(qū)一模)在等邊△ABC的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動時(shí),BM、NC、MN之間的數(shù)量關(guān)系及△AMN的周長Q與等邊△ABC的周長L的關(guān)系.

(1)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是______;此時(shí)=______;
(2)如圖2,點(diǎn)M、N邊AB、AC上,且當(dāng)DM≠DN時(shí),猜想(1)問的兩個(gè)結(jié)論還成立嗎?寫出你的猜想并加以證明;
(3)如圖3,當(dāng)M、N分別在邊AB、CA的延長線上時(shí),若AN=x,則Q=______(用x、L表示).

查看答案和解析>>

同步練習(xí)冊答案